2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: Задача по теории чисел
Сообщение18.09.2009, 00:03 
Аватара пользователя
С нижними индексами красивее.

$n=p_1^{a_1}p_2^{a_2}....p_s^{a_s}$
$t(n)=(a_1-1)(a_2-1)....(a_s-1)$это неверно

 
 
 
 Re: Задача по теории чисел
Сообщение18.09.2009, 00:03 
Аватара пользователя
2 maxmatem:
Как верхний, только наоборот.
Через _

-- Пт, 2009-09-18, 01:05 --

2 gris: не уподобляйтесь, Вы же знаете, как пишется буква тау.

 
 
 
 Re: Задача по теории чисел
Сообщение18.09.2009, 00:13 
Аватара пользователя
$\tau(n)=(a_1+1)(a_2+1)...(a_s+1)$ это верная!
но если $n=2^{3}*1*3=24$, то $\tau(24)=(3+1)(1+1)(1+1)=16$ тогда мне это не ясно!

 
 
 
 Re: Задача по теории чисел
Сообщение18.09.2009, 00:22 
Аватара пользователя
maxmatem, ну послушайте, формулу ведь не боги придумали. А люди. Такие же, как мы с Вами. Ну возьмите, проверьте руками, сколько там делителей на самом деле, как, чего.

 
 
 
 Re: Задача по теории чисел
Сообщение18.09.2009, 00:28 
Аватара пользователя
ну я и посчитал что в числе 24 их 6! значит задача решена верно?

 
 
 
 Re: Задача по теории чисел
Сообщение18.09.2009, 00:34 
Аватара пользователя
Не посчитали, не 6, и не значит. Всё не так.
(Под "проверить руками" я подразумевал: выписать на бумажке числа от 1 до 24, вычеркнуть лишние, посчитать нужные.)

 
 
 
 Re: Задача по теории чисел
Сообщение18.09.2009, 00:51 
Аватара пользователя
а 18 верно?

 
 
 
 Re: Задача по теории чисел
Сообщение18.09.2009, 01:24 
Аватара пользователя
maxmatem

Если от 1 до 17 нет такого числа - значит верно ;)

 
 
 
 Re: Задача по теории чисел
Сообщение18.09.2009, 06:47 
maxmatem в сообщении #244280 писал(а):
$\tau(n)=(a_1+1)(a_2+1)...(a_s+1)$ это верная!
но если $n=2^{3}*1*3=24$, то $\tau(24)=(3+1)(1+1)(1+1)=16$ тогда мне это не ясно!
Так вы и единицу в простые числа записали?! Жуть!

Ровно 6 натуральных делителей имеют либо числа вида $p^5$, либо числа вида $p^2q$. Остается взять самое маленькое $p$ для первого случая и самые маленькие $p$ и $q$ для второго, а затем сравнить результаты.

 
 
 
 Re: Задача по теории чисел
Сообщение18.09.2009, 08:07 
Аватара пользователя
ИСН, а Вы за постепенство переживали :)

Тут уже многими авторитетами высказывалось мнение, и я с ним скромно соглашусь. Школьникам, а как я понял maxmatem для 9-го класса старается, не нужно начинать с вывода общих формул. Им надо сначала врукопашную посчитать количество делителей для разных чисел, понять, откуда они берутся, посмотреть, как повышение степени одного из сомножителей влияет на эту тау. И потом они постепенно сами выведут требуемую формулу. И будут радоваться, проверяя свои частные результаты. Не забывая, что 1 и само число также являются делителями.

 
 
 
 Re: Задача по теории чисел
Сообщение18.09.2009, 08:45 
Здесь было сообщение, неверное с методической точки зрения.
Автор сообщения с ходу не въехал в то, что топик-стартера постепенно подводят к формуле. :oops:

 
 
 
 Re: Задача по теории чисел
Сообщение18.09.2009, 09:03 
gris в сообщении #244311 писал(а):
ИСН, а Вы за постепенство переживали :)

Тут уже многими авторитетами высказывалось мнение, и я с ним скромно соглашусь. Школьникам, а как я понял maxmatem для 9-го класса старается, не нужно начинать с вывода общих формул.
В принципе и я согласен с этим мнением.
Но в данном случае топикстартер уже отталкивался от общей формулы (правда, при этом он то записывал единицу в простые, а то вычитал единички из показателей).
И еще. Мой опыт показывает. Чтобы подвести школьника к выводу не вообще какой-то формулы, а именно формулы для $\tau(n)$ гораздо эффективнее не перебирать делители конкретных чисел, а спрашивать: сколько натуральных делителей у чисел вида $p^{\alpha}$; сколько делителей у чисел вида $p^{\alpha}q^{\beta}$ и т.д.

 
 
 
 Re: Задача по теории чисел
Сообщение18.09.2009, 19:27 
Аватара пользователя
ИСН в сообщении #244263 писал(а):
Вот я так и пытался. Продать число 28, потом 20...


И что, кто-нибудь купил? Почём ныне числа продают? :)

 
 
 
 Re: Задача по теории чисел
Сообщение18.09.2009, 19:46 
Аватара пользователя
Вообще - не знаю, а я бы продал за одно движение мысли. Но - - -

 
 
 
 Re: Задача по теории чисел
Сообщение19.09.2009, 08:44 
Боюсь, что все запутали топик-стартера.
И я - в том числе, когда написал предыдущее сообщение, которое затем стер, но теперь воспроизведу вновь:
Цитата:
Натуральные делители числа $N=p_1^{a_1}\cdot p_2^{a_2}\cdot...\cdot p_s^{a_s}$ можно найти из выражения:
$ (p_1^{a_1}+p_1^{a_1-1}+...+p_1+1)\cdot (p_2^{a_2}+p_2^{a_2-1}+...+p_2+1)\cdot...\cdot (p_s^{a_s}+p_1^{a_s-1}+...+p_s+1) $
Т.е. задача сводится к тому, чтобы
во-первых, подобрать такие $a$ и $s$, чтобы при перемножении скобок получить 6 слагаемых;
во-вторых, подобрать $p$ такие, чтобы число $N$ было минимальным.

Так вот, наша общая ошибка кроется в следующем:
gris в сообщении #244311 писал(а):
Не забывая, что 1 и само число также являются делителями.

Само число не относится к числу своих делителей, т.к. в противном случае не будет совершенных чисел.

Таким образом, задача сводится к тому, чтобы
во-первых, подобрать $a$ и $s$ такие, чтобы при перемножении скобок получить 7 слагаемых (само число $N$ и 6 его делителей);
во-вторых, подобрать $p$ такие, чтобы число $N$ было минимальным.

 
 
 [ Сообщений: 37 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group