Прошу извинить меня за нечастые включения в дискуссию. К сожалению, я не могу сидеть целыми сутками у компьютера.
Данная тема вынесена мною на обсуждение для того, чтобы посеять сомнение в умах молодёжи относительно существующих математических знаний, считающихся непреложными истинами. Поверьте, не все они правильны. Евклид, Диофант, Ферма, Гаусс, Эйлер, Лобановский, Колмогоров, Ивлиев, другие авторитеты не были богами, а значит, могли ошибаться в своих выводах.
Если говорить о площади и объёме шара, то я пришёл к выводу, может быть, благодаря способности к мысленному воспроизведению геометрических образов, что площадь поверхности любого шара сравнима с площадью кругового цилиндра, диаметр основания и высота которого равны стороне квадратуры круга.
Площадь большого сечения шара равна

. Радиус любого произвольного круга можно принять за 1. Отсюда, найдём сторону квадратуры круга -

или просто

, что меньше диаметра большого сечения шара (он равен 2 R или 2). Зная диаметр кругового цилиндра, объём которого сравним с объёмом шара, можно рассчитать площадь поверхности и объём шара. Предполагаю, что математические расчёты приведут не к тем результатам, что известны.