2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Ответ TigerSWAT о необходимости набора формул
Сообщение24.11.2023, 23:38 
TigerSWAT в сообщении #1619673 писал(а):
Кстати, Ende, а чем вызвана такая политика сайта, что, мол, хочешь-не хочешь, а надо программировать? Я не хочу обвинять кого-то в каких-то личных или других неприязнях к чему-то.
Набор формул в $\TeX$ - это не программирование. Это гораздо проще. Поставить слева и справа доллар, чтобы F превратилось в $F$ - невелик труд. Для набора дробей, корней и прочих команд, которые Вы не хотите помнить, на форуме есть $\LaTeX$-помощник (кнопочка прямо над полем нового сообщения).

Чем вызвано требование пользоваться $\TeX$? Тем, что формулы в стиле "просто текст" выглядят безобразно. Как бы Вы набирали "просто текстом" вот такой пост? (Авторство стираю, чтобы не дергать автора пустым упоминанием).

Цитата:
Здравствуйте. Помогите пожалуйста разобраться в доказательстве теоремы:
Если $f \in L(E)$, то $|f| \in L(E) $ и $|$\int f(x) dx$| \leq $\int |f| dx$$


Доказательство из Курса математического анализа том 2 Никольского С.М.:
Пусть $E' \subset E$, $\mu E' = \mu E$ - множество, на котором f конечна. На нем можно определить, как мы знаем, неотрицательные функции $f_+,f_- \in L(E')$, для которых верно:
$|f(x)| = f_+(x) + f_-(x)$, $f(x) = f_+(x) + f_-(x)$[/c]
Отсюда $|f| \in L(E')$, следовательно, также $|f| \in L(E)$. Кроме того, выполняются равенства:

$$\int_{E'} |f| dx= \int_{E'} f_+ dx + \int_{E'} f_- dx$$, $$\int_{E'} f dx =\int_{E'} f_+ dx - \int_{E'} f_- dx$$

из которых, если учесть, что интегралы от $f_+$ и $f_-$ суть не отрицательные числа, непосредственно следует исходное неравенство с $E'$ вместо $E$, но тогда это неравенство верно и для $E$.

А теперь вопросы:
Почему мы можем определить $f_+,f_- $ так чтобы они были интегрируемы? Что здесь означает "конечная функция"? И почему мы можем сказать, что если неравенство выполняется для $E' \subset E$, то выполняется и для $E$?

P.S. $$
f_+=\begin{cases}
f(x),&\text{если $x\geqslant0$;}\\
0,&\text{если $x<0$;}
\end{cases}
$$$$f_-=\begin{cases}
f(x),&\text{если $x<0$;}\\
0,&\text{если $x\geqslant0$;}
\end{cases}
$$

 
 
 
 Re: Ответ TigerSWAT о необходимости набора формул
Сообщение24.11.2023, 23:52 
Аватара пользователя
А ссылку на пост можно?

 
 
 
 Re: Ответ TigerSWAT о необходимости набора формул
Сообщение25.11.2023, 13:42 
Combat Zone в сообщении #1619697 писал(а):
А ссылку на пост можно?
Можно, только зачем? Тема очень старая. topic65933.html

 
 
 
 Re: Ответ TigerSWAT о необходимости набора формул
Сообщение25.11.2023, 19:56 
Аватара пользователя
Ende
Спасибо. Стало любопытно взглянуть: уж очень много ошибок.

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group