Do you agree that this is an invalid pattern?
I agree, 2.53 is unacceptable by modulo 11, but it was not a question of modulo acceptability, but how to get pcoul to check patterns with placed large primes. I was hoping check by pcoul would be faster and more versatile than check by PARI, it would make it much easier to reduce the -p threshold for the largest primes (but the real speed has yet to be discovered).
To check correctness, you can use, for example, the recently found chain
38035281*2639713673^2:265033195588524939489926041: 16, 32, 16, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 64,192, valids=10, maxlen=10
corresponding to the pattern D12n10-b136
2^2 5 2.3^2 7^2 2^5 3.12678427 2.5^2 . 2^2.3 . [sq=1]
which turns into sq=1 because of the addition of 12678427 and should check quadratically.
-- 01.02.2023, 21:05 --I was hoping check by pcoul would be faster and more versatile than check by PARI, it would make it much easier to reduce the -p threshold for the largest primes (but the real speed has yet to be discovered).
Generally speaking, this question has lost its relevance: after I wrote and Ferma test for
and KTO (up to
) and generating primes (up to
), the speed of checking large prime is already limited to them and by using assembler and AVX she most likely exceeds the speed of C program.