2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Иллюстрация геометрического смысла дифференциала
Сообщение27.11.2022, 17:05 
Заслуженный участник
Аватара пользователя


20/08/14
8077
в книге Фихтенгольц Курс дифференциального и интегрального исчисления, т. 1, гл. V, п. 180, с. 386, на рис. 101 проиллюстрирован геометрический смысл дифференциала и частных дифференциалов.
Вложение:
 (Фихтенгольц т 1 с 101).jpg
(Фихтенгольц т 1 с 101).jpg [ 127.98 Кб | Просмотров: 0 ]

Показана поверхность $z = f(x, y)$ (в клеточку). Чтобы не возиться с изысканным шрифтом Фихтенгольца, переобозначим ее $\Phi$. Заштрихованная плоскость - касательная к поверхности в точке $M_0(x_0, y_0, z_0)$, ее переобозначим $\Pi$. Придав переменным приращения $\Delta x, \Delta y$, получим точку $M(x, y, z)$, где $x = x_0 + \Delta x, y = y_0 + \Delta y$, $z = f(x,y)$.

Проведем через точку $M_0$ плоскость $\omega$ параллельно плоскости $xOy$. На рисунке это непоименованная плоскость, намеченная штриховыми линия ми, в которой лежат точки $K, K_1, K_2$. Ниже мы скажем, что это за точки.

Точка $K(x, y, z_0)$ есть проекция точки $M$ на плоскость $\omega$. Очевидно, что $|KM| = z - z_0$, и это полное приращение функции.

Отметим в плоскости $\omega$ точку $K_1(x, y_0, z_0)$. Перпендикуляр к плоскости $\omega$, проведенный в точке $K_1$, пересекается с поверхностью $\Phi$ в точке $M_1(x, y_0, z_0 + \Delta z_x)$, где $\Delta z_x = f(x_0 + \Delta x, y_0) - f(x_0, y_0)$. Таким образом, $|K_1M_1| = \Delta z_x$ - частное приращение функции, соответствующее приращению $\Delta x$.

Перпендикуляр к плоскости $\omega$, проведенный в точке $K_1$, пересекается с касательной плоскостью $\Pi$ в точке $N_1(x, y_0, z_0 + dz_x)$, где $dz_x = \dfrac{\partial f}{\partial x}\Delta x$ - частный дифференциал по переменной $x$.

Аналогично отметим в плоскости $\omega$ точку $K_2(x_0, y, z_0)$. Перпендикуляр к плоскости $\omega$, проведенный в точке $K_2$, пересекается с поверхностью $\Phi$ в точке $M_2(x_0, y, z_0 + \Delta z_y)$, где $\Delta z_y$ - частное приращение функции, соответствующее приращению $\Delta y$. Правда, при взгляде на верхнюю часть рисунка непросто понять, что точки $M$ и $K_2$ имеют одну и ту же ординату. Нужно опустить взгляд в координатную плоскость, благо автор любезно провел нужные перпендикуляры.

Перпендикуляр к плоскости $\omega$, проведенный в точке $K_2$, пересекается с касательной плоскостью $\Pi$ в точке $N_2(x_0, y, z_0 + dz_y)$, где $dz_y$ - частный дифференциал по переменной $y$.

Недостаток данного рисунка, по моему мнению, заключается в том, что из него совсем не очевидно важное равенство
$$|KN| = |K_1N_1| + |K_2N_2|$$
которое следует из дифференциального исчисления: $dz = dz_x + dz_y$.
Чтобы убедиться, что оно выполняется, нужно приложить к рисунку линейку с делениями. Возможно, автор просто не хотел загромождать и без того сложный рисунок лишними перпендикулярами.

Вопрос: попадался ли уважаемым участникам в каком-нибудь учебном пособии рисунок, на котором это важное равенство подчеркнуто? Если Вы читаете студентам эту тему, считаете ли Вы нужным подчеркивать это равенство графически?

 Профиль  
                  
 
 Re: Иллюстрация геометрического смысла дифференциала
Сообщение27.11.2022, 17:17 
Заслуженный участник


13/12/05
4520
Anton_Peplov в сообщении #1571651 писал(а):
Недостаток данного рисунка, по моему мнению, заключается в том, что из него совсем не очевидно важное равенство
$$|KN| = |K_1N_1| + |K_2N_2|$$
которое следует из дифференциального исчисления: $dz = dz_x + dz_y$.

Да нет, очевидно. Вектор $\overset{\longrightarrow}{M_0N}$ равен сумме векторов $\overset{\longrightarrow}{M_0N_1}$ и $\overset{\longrightarrow}{M_0N_2}$

 Профиль  
                  
 
 Re: Иллюстрация геометрического смысла дифференциала
Сообщение28.11.2022, 14:43 
Заслуженный участник
Аватара пользователя


20/08/14
8077
Padawan в сообщении #1571653 писал(а):
Вектор $\overset{\longrightarrow}{M_0N}$ равен сумме векторов $\overset{\longrightarrow}{M_0N_1}$ и $\overset{\longrightarrow}{M_0N_2}$
Сдаюсь. Наверное, хороший студент должен был это увидеть.

 Профиль  
                  
 
 Re: Иллюстрация геометрического смысла дифференциала
Сообщение28.11.2022, 16:48 


04/07/15
137
Не знаю, мне всегда казалось, что подобные примеры лучше показывать на поверхностях, заданных неявными выражениями.
Что касается рисунков, то в наше время их можно получить очень качественно с помощью пакетов компьютерной алгебры, сопровождая соответствующими им буквенными выражениями как на самих рисунках, так и на рабочем поле.

 Профиль  
                  
 
 Re: Иллюстрация геометрического смысла дифференциала
Сообщение28.11.2022, 17:05 
Заслуженный участник
Аватара пользователя


30/01/09
6680
Anton_Peplov в сообщении #1571747 писал(а):
Наверное, хороший студент должен был это увидеть.

Данный учебник читал. Рисунок, наверное, видел. Но вряд ли подробно разбирал, что там к чему. Уж слишком много букв. Основная идея понятна. Дифференциал задаёт плоскость, которая касается исходной поверхности. Рассматриваемое равенство, по-видимому, следует из очевидного равенства $(c,a+b)=(c,a)+(c,b)$ (скобки - скалярное произведение).

 Профиль  
                  
 
 Re: Иллюстрация геометрического смысла дифференциала
Сообщение28.11.2022, 18:43 
Заслуженный участник
Аватара пользователя


20/08/14
8077
мат-ламер в сообщении #1571757 писал(а):
Рассматриваемое равенство, по-видимому, следует из очевидного равенства $(c,a+b)=(c,a)+(c,b)$ (скобки - скалярное произведение).
Тот факт, что
Padawan в сообщении #1571653 писал(а):
Вектор $\overset{\longrightarrow}{M_0N}$ равен сумме векторов $\overset{\longrightarrow}{M_0N_1}$ и $\overset{\longrightarrow}{M_0N_2}$
устанавливается "по-школьному": по правилу параллелограмма. А дальше нужно лишь переписать это равенство в аппликатах.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 6 ] 

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: DimaM


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group