2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 123, 124, 125, 126, 127, 128, 129 ... 215  След.
 
 Re: Пентадекатлон мечты
Сообщение11.09.2022, 11:53 
Dmitriy40 в сообщении #1564552 писал(а):
VAL
Требование файлов было не в логах, а в окне консоли, где море текста, там даже не сам yafu требовал, а винда ругнулась на отсутствие файла ("..." не является выполнимой командой или как-то так). В логах yafu при этом и было пусто.
Удобнее разбираться на том числе $M(252)$ n+8, там за час-полтора yafu нагеренит задание для gnfs и потом уже можно просто его снова запускать и смотреть что будет, времени ведь уже не тратится. Во всяком случае у меня кроме распаковки двух файлов ничего более не потребовалось и запускал просто сам yafu повтором той же команды.
Окно консоли автоматически закрывается сразу после окончания счета (а счет идет несколько часов). Сохраняется ли где-то то, что было в этом окне, я не нашел.
Поместил в текущий каталог скачанные exe-шники и запустил факторизацию того же числа. Сработало мгновенно. Но с тем же самым результатом. И с той же последней строкой в протоколе.

PS: Надеюсь, пока я тут неуклюже пытаюсь YAFU приручить, Alpertron факторизацию. Тем более, что я его на три потока распараллелил.

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.09.2022, 11:59 
Аватара пользователя
Dmitriy40 в сообщении #1564552 писал(а):
Для остальных 14-ок это не так:

Ну конечно не так !!

Они ведь все найдены старым способом ! Без единого выброса! Все квадраты на своих местах. И плохое количество делителей никак не может быть степенью двойки, оно всегда делится на три!

Это же давным-давно известно, с первых страниц темы!

Dmitriy40 в сообщении #1564552 писал(а):
заметно более вероятны много простых в первой степени чем хотя бы одно простое в квадрате. Но низкая вероятность не отменяет факта наличия.

Совершенно не отменяет. Но эту низкую вероятность я хотел бы посчитать количественно. Всё ленюсь.

Dmitriy40 в сообщении #1564552 писал(а):
Если Вам неважно пропустить подходящую 14-ку, то да, можно и потребовать отсутствия квадрата, особенно если это ускорит счёт (1/6 паттернов это прекрасно).

Я не требовал отсутствия квадрата, всё-таки. Просто не гарантировал его наличие. То есть выбрасывал из паттерна. Неподходящие 600 паттернов из каждой группы тоже выбросил.

Я таким способом(64 группы по 120 паттернов) просчитал 29-й комплект до 7 тысяч. Сейчас проверил таким способом непрерывную 14-ку Маруси на высоте 14 200. Нашлась.

То-то и оно, что приходит время отказа от прежних методов поиска. Но первую таблицу-то надо досчитать.

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.09.2022, 12:26 
VAL в сообщении #1564553 писал(а):
Окно консоли автоматически закрывается сразу после окончания счета (а счет идет несколько часов). Сохраняется ли где-то то, что было в этом окне, я не нашел.
Нет, не сохраняется.
Но что Вам мешает сначала запустить консоль (Win+R - cmd.exe - Enter) и уже в ней запускать yafu?! При этом окно консоли не закроется пока сами не закроете. Или не знаете про команду cd?
Почему несколько часов и причём тут вообще счёт не очень понятно, разбирательства с yafu можно вести совершенно отдельно от любого счёта. А для получения данных для gnfs для того числа n+8 мне хватило 1.5ч, и это однократно, дальше лишь пробовать как запустится gnfs.
Вполне вероятно что у Вас yafu требует вовсе не gnfs-lasieve4I13e.exe под Ivy Bridge, а какой-то другой, специально под AMD - вот и надо посмотреть что же он требует и это и найти.

Yadryara
Если отказываться от поиска 15-ки и искать конкретно 14-ку, то логично и паттерны сделать именно под неё. И тогда не надо этих вот заморочек с квадратами/не квадратами или проверяемыми/не проверяемыми на краях. И поменять для этого достаточно один лишь M12mods1.gp.

-- 11.09.2022, 12:55 --

Yadryara
Всё же и по новому способу иногда находятся цепочки не со степенью двойки на неправильном месте:
N9-42-601532:5831310458930984039881054111185945: 12, 12, 12, 12, 12, 12, 96, 12, 12, 12, 12, 12, 12, 12, 12, valids=14, maxlen=8, ALL
S2-36-203164:6107879360323054060768953285196441: 12, 24, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, valids=14, maxlen=13
Очень грубо можно прикинуть их вероятность как $1/35$ - у меня в списке их лишь две из 70-ти найденных новым способом. У Вас очевидно их должно быть больше.

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.09.2022, 13:44 
Аватара пользователя
Dmitriy40 в сообщении #1564556 писал(а):
Если отказываться от поиска 15-ки и искать конкретно 14-ку, то логично и паттерны сделать именно под неё.

Конечно.

Dmitriy40 в сообщении #1564556 писал(а):
Всё же и по новому способу иногда находятся цепочки не со степенью двойки на неправильном месте:

В курсе. Раньше меня больше интересовало не просто отсутствие степени двойки на месте с выбросом, а именно наличие там 12 делителей. То есть насколько часто именно эти четыре конструкции:

$p^2qr$

$p^3q^2$

$p^5q$

$p^{11}$

собираются сами собой? Возможно, даже реже чем $1/180$.

Желающим полюбоваться 14-ками вроде по-прежнему можно заглянуть вот сюда

Dmitriy40 в сообщении #1552391 писал(а):
Досчитался последний диапазон в низинах до 1e38, всё объединил в один файл Result.0e38.txt и выложил в облако по прежней ссылке (предыдущие логи убил).
Четвёртой пятнашки так и не нашёл.

Здесь 56 обычных 14-к и 16 непрерывных(по-памяти).

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.09.2022, 16:26 
Аватара пользователя
Хорошо. Вот список всех известных 14-к вплоть до первой непрерывной. Особо обращает на себя внимание 2-й результат. Найден по системе с двумя выбросами.

Код:
  1.       3797306190383689322319167788441   128     S9-32-204531   2   Dm

  2.       8465690351577098126087841014041     4     S9-43-204103   2   Dm

  3.     259037697563588532195140710301145    16     N9-73-421506   D   Dm

  4.     517323644441352164508238287911641     8     S2-46-503162   2   Dm 

  5.     937749576115599672133078413902041    16     S9-26-536401   9   De

  6.    1644045397000202097257384783236441    32     S9-41-503214   2   Na

  7.    2523070846505196118004730922674841    16     S9-51-345102   9   Na

  8.    2596570872606845562606814561185945     4     N9-42-210436   B   Na

  9.    3067156509258374440567582835178841     8     S9-45-601425   2   De

10.     3622442787032728972968170496168345     8     N2-46-062134   2   Na

11.     5647219565443862443036265765544345     4     N9-46-062134   3   Na

12.     5675649020130167140192706236675545     8     N9-41-601432   7   Na

13.     5831310458930984039881054111185945    96     N9-42-601532   7   De

14.     6107879360323054060768953285196441    24     S2-36-203164   2   Na

15.     6523980598256304645405510380073945    16     N9-42-104523   7   Na

16.     7366533154797877735424335147176345     8     N2-35-521043  13   Na

17.     8527821822518768120123764664174041     8     S9-53-532401   9   Na

18.     9687936215599602783812822055365145    16     N2-45-652403   E   De

19.     9922985334352780337966587369910041     8     S9-51-532041   7   Na

20.     9934168307077120855717822079092441     8     S9-45-405621   2   De

21.    10450183440390298033961001751872345     4     N9-26-624013  11   Na

22.    10811479606888915408182631166097945    64     N9-53-361204   E   Na

23.    10971860581411131970471492130193945    16     N9-23-152046   D   De

24.    11590620189478148425607728011724441   128     S9-56-530412   3   Na

25.    11802394069079756844950115237998041     8     S9-21-231054   9   Na


26.    11865604480910140781102260713619545     2     N2-51-623410   F   Na

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.09.2022, 17:55 
А зачем через строку? Так любите необозримые списки? ;-)

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.09.2022, 23:40 
Yadryara в сообщении #1564562 писал(а):
То есть насколько часто именно эти четыре конструкции: $p^2qr$, $p^3q^2$, $p^5q$, $p^{11}$ собираются сами собой? Возможно, даже реже чем $1/180$.

I've always felt it should not be hard to determine the probability of a given prime signature in terms of $n$ for a number randomly chosen "in the region of" $n$ (assuming we can find a rigorous definition for "in the region of"). But I'm pretty sure I don't have the right background to find them - when I investigated this some time ago, I got stuck trying to establish a shortcut for the signature $pq$, and sadly never received any responses to a post on the subject at https://math.stackexchange.com/questions/3955680.

However a small but nice result is that the simple case $p^k$ works out to first approximation as $\frac{1}{n^{\frac{k - 1}{k}} \log n}$ (which simplifies as you'd expect for $k=1$).

 
 
 
 Re: Пентадекатлон мечты
Сообщение12.09.2022, 13:49 
Аватара пользователя
Yadryara в сообщении #1564562 писал(а):
12 делителей.

Это A030630.

$p^2qr$ это A085987.

$p^3q^2$ это A143610.

$p^5q$ это A178740.

$p^{11}$ это A079395.

Я немало всяких вычислений провёл. В частности, считал количество $p^2qr$ до некоторого натурального. Три первые строчки взял из OEIS, остальные сам посчитал на PARI.

Код:
       3 do           100

      79 do         1 000

     937 do        10 000

    9346 do       100 000

   87338 do     1 000 000

  804249 do    10 000 000

7400213 do   100 000 000


Да, через строчку. Уже писал, что зрение подсело.

Можно аппроксимировать и прикинуть частотность для нашего диапазона.

 
 
 
 Re: Пентадекатлон мечты
Сообщение13.09.2022, 07:41 
Аватара пользователя
Ещё два значения нашёл. Итого посчитано до $10^{10}$. А надо бы до $10^{35}$.

Код:
              3 do           100

             79 do         1 000

            937 do        10 000

           9346 do       100 000               -0.02%

          87338 do     1 000 000               -0.62%

         804249 do    10 000 000               -0.69%

        7400213 do   100 000 000               -0.64%
                               9
       68391432 do          10                 -0.56%
                              10
      635506900 do          10                 -0.48%


У кого компы побыстрее могут и подальше посчитать. Код пока брал такой:

Код:
kpod=0; m=1;st=10;
finp=ceil(sqrt(m*10^st))+1;
\\print();
{forprime(p=2, finp,
finq=ceil(sqrt(m*10^st/p^2))+1;
forprime(q=p+1,finq,
print();
finr=ceil(m*10^st/(p^2*q))+1;
print(" ",p, "  ",q, "           ",finp,"           ",finq,"           ",finr);
\\print();
forprime(r=q+1,finr, n1=p^2*q*r;n2=p*q^2*r;n3=p*q*r^2;
if(n1<=10^st, kpod=kpod+1);
if(n2<=10^st, kpod=kpod+1);
if(n3<=10^st, kpod=kpod+1);
\\print(" ",p, "  ",q, "  ",r, "      ", n1, "      ", n2, "      ", n3);
);
);
)}
print();
print(kpod);
quit;

 
 
 
 Re: Пентадекатлон мечты
Сообщение13.09.2022, 08:48 
Аватара пользователя
Yadryara в сообщении #1564573 писал(а):
Вот список всех известных 14-к вплоть до первой непрерывной. Особо обращает на себя внимание 2-й результат. Найден по системе с двумя выбросами.

А откуда я знаю про два выброса?

Всё просто. Смотрим на концовку имени паттерна(последние 6 цифр):

Два нуля — два выброса;
Один нуль — один выброс;
Без нулей — без выбросов(старый способ).

Отличить, например, 31-й комплект от 37-го тоже очень просто. Снова смотрим на концовку имени паттерна:

Если отсутствует 1-ца это 17-й комплект;
Если отсутствует 2-ка — 19-й комплект;
...
Если отсутствует 5-ка — 31-й комплект;
Если отсутствует 6-ка — 37-й комплект.

 
 
 
 Re: Пентадекатлон мечты
Сообщение14.09.2022, 06:00 
Аватара пользователя
И опять тишина.

Yadryara в сообщении #1564543 писал(а):
Вчера чета Ахиллесов нашла ещё одна непрерывную 14-ку на высоте 56 тысяч.

Вчера Маруся нашла ещё одна непрерывную 14-ку на высоте 37 тысяч.

Yadryara в сообщении #1564543 писал(а):
Причём в 7 случаях из 8 плохое число стоит на последнем месте.

На сей раз плохое число оказалось на первом месте. Так что в 7 случаях из 9 плохое число на последнем месте.

17-й комплект будет полностью обсчитан не позднее чем завтра.
19-й комплект полностью обсчитан.
23-й комплект полностью обсчитан.
29-й комплект будет полностью обсчитан не позднее чем 21-го сентября.

Маруся и Ахимед теперь уже вдвоём считают 29-й.

31-й комплект обсчитан до 49 200. И ещё на большом интервале, границы которого надо бы уточнить.

37-й комплект обсчитан до 35 600. И ещё на большом интервале...

Надеюсь, Софокл сможет помочь с 37-м, самым отстающим комплектом. Например, посчитать концовку от 70 тысяч до 98 тысяч.

 
 
 
 Re: Пентадекатлон мечты
Сообщение14.09.2022, 16:41 
Yadryara в сообщении #1564628 писал(а):
Код пока брал такой:
Здесь можно немного (первые два пункта) оптимизировать:
1. Все три значения похожи друг на друга в том смысле что везде берётся одно простое в квадрате и два простых в первой степени, потому считать можно только одно любое значение.
2. Цикл по r можно заменить на функцию $\pi(x)$ если аккуратно подставить ей предел и учесть совпадение r c p и условие r>q.
3. Для больших пределов функции $\pi(x)$ лучше использовать не встроенную в PARI primepi(), а внешнюю primecount.exe (брать здесь).
В итоге получится такой код и его запуск под gp64:
Код:
default(primelimit,10^8);\\Подсчитаем простые заранее для ускорения primepi()
{for(k=1,13,
   n=0; t0=getwalltime();
   forprime(p=1,floor(sqrt(10^k/6)),
      qq=0;
      forprime(q=1,floor(sqrt(10^k/p^2)),
         qq++;\\Замена primepi(q)
         if(q==p, next);\\Учёт совпадения q==p
         t=floor(10^k/p^2/q);
         if(t>1e8, z=extern(strexpand("primecount.exe ",t)), z=primepi(t));\\primecount займёт все доступные потоки!
         z-=qq;\\Учёт условия r>q
         if(p>q && p<=t, z--);\\Учёт совпадения r==p
         if(z>0, n+=z);
      );
   );
   printf("10^%d: n=%d, time: %s\n", k,n,strtime(getwalltime()-t0));
)}
10^1: n=0, time: 0 ms
10^2: n=3, time: 1 ms
10^3: n=79, time: 0 ms
10^4: n=937, time: 0 ms
10^5: n=9346, time: 1 ms
10^6: n=87338, time: 1 ms
10^7: n=804249, time: 3 ms
10^8: n=7400213, time: 8 ms
10^9: n=68391432, time: 102 ms
10^10: n=635506900, time: 599 ms
10^11: n=5936803067, time: 4,472 ms
10^12: n=55732807965, time: 31,847 ms
10^13: n=525488451294, time: 4min, 14,454 ms


-- 14.09.2022, 16:51 --

Добавлю, что внешняя primecount сильно помогает лишь для k>9, вот запуск без её использования, только на встроенной primepi() (в условии 1e8 заменено на 1e88):
Код:
10^8: n=7400213, time: 8 ms
10^9: n=68391432, time: 105 ms
10^10: n=635506900, time: 2,953 ms
10^11: n=5936803067, time: 32,900 ms

 
 
 
 Re: Пентадекатлон мечты
Сообщение15.09.2022, 06:41 
Аватара пользователя
Dmitriy40, Круто! Круто!! Круто!!!

Снова приходит Супермен и снова превращает карету в ракету.

Я конечно и сам уже улучшил этот свой код, но что эти 35% ускорения по сравнению с Вашим, 2000-кратным.

Вплоть до 12-й степени включительно уже было обсчитано, спасибо что показали 13-ю. Хорошо совпала с прогнозом.

Прогноз на 14-ю степень: 4976...

Yadryara в сообщении #1564654 писал(а):
17-й комплект будет полностью обсчитан не позднее чем завтра.

Но у Софокла были свои планы на этот счёт. Мало того, что он вчера около часу ночи вырубился, так ещё и прикинулся Архимедом.

Yadryara в сообщении #1564115 писал(а):
Правда, круг в 10 000 е30 слишком огромен. Выигрыш в скорости незначителен, а форс моржовый не дремлет.

Вот я как раз такие случаи имел в виду. Хорошо ещё, что круг был 1000 е30. Перезапустили Софокла без особых мучений почти с тех же высот. Теперь ждём финиша завтра.

Пытался разобраться как работают экспериментальные прогоны в 31-м и 37-м комплектах, ибо точной инфы по трём параметрам не было. Предположение:

Код:
start=49736*10^30;\\ Откуда начать
stop=97649*10^30;\\ Где закончить (не включая)
step= 10000*10^30;\\ Сколько отвести на каждый круг перебора

Для обоих комплектов. Причём в 31-м уже считается 2-й огромный круг, а в 37-м — 1-й.

Если это так, то надо помогать с обсчётом 37-го, начиная с 3-го круга: запускать новый обсчёт на Софокле не с 70-ти тысяч, а с 69700. С небольшим перехлёстом в 36 для перепроверки. Вот так:

Код:
start=69700*10^30;\\ Откуда начать
stop=97700*10^30;\\ Где закончить (не включая)
step= 1000*10^30;\\ Сколько отвести на каждый круг перебора

 
 
 
 Re: Пентадекатлон мечты
Сообщение15.09.2022, 10:10 
Аватара пользователя
Если экспериментальность прогонов на Ахиллесах заключается только в изменении start, stop и step, то такие прогоны конечно пойдут в зачёт.

Другие параметры трогать совершенно необязательно. Очень надеюсь, что их и не трогали.

Количество шагов(kolshag) уже давно задаётся автоматически и с запасом. Большой иф настроен мягко.

Ахиллесу надо определиться, что делать дальше. Самый предпочтительный(по скорости) вариант:

1. Досчитать 37-й комплект до 58590 е30. Аккуратно остановить счёт, прислать логи. И заниматься только 31-м комплектом.

А 37-м могут заняться Софокл, Маруся(AVX2) и Архимед. По 8 потоков у каждого.

Тогда по-прежнему есть шанс закончить в сентябре.

Либо

2. Досчитать 31-й комплект до 68355 е30. Аккуратно остановить счёт, прислать логи. И заниматься только 37-м комплектом.

А 31-м тогда смогут заняться Софокл, Маруся и Архимед.

Но боюсь, досчитывание до 68355 займёт много времени. Да и в дальнейшем заниматься 37-м Ахиллесу придётся долго, ибо это самый медленный комплект.

Другие варианты представляются не менее долгими.

 
 
 
 Re: Пентадекатлон мечты
Сообщение15.09.2022, 10:26 
$M(216)\ge 11$

(Оффтоп)

n=369953865853593094717099590469418886163368654688665021988338275370493997922902084348467788151839894248700
5916407085933063162866223068155541|n
2638012406233205639701915749673|n+4
19135847821158020971235423027|n+7

 
 
 [ Сообщений: 3218 ]  На страницу Пред.  1 ... 123, 124, 125, 126, 127, 128, 129 ... 215  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group