2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4
 
 Re: Соседние натуральные числа в теореме Ферма
Сообщение06.09.2022, 20:38 
Аватара пользователя
Это дело надо иллюстрировать, а то непонятно. Займёмся только первой скобкой. Пусть $z=12; y=4. \Rightarrow (z-y)=12-4=8=2^3$ Куб. А теперь на него же и умножим обе переменные.
$z=12\cdot 8=96; y=4\cdot 8=32. \Rightarrow (z-y)=96-32=64=4^3$ Снова куб!!!
Тоже при умножении на A000578.
Ой. Это я плохо пошутил :facepalm:

 
 
 
 Re: Соседние натуральные числа в теореме Ферма
Сообщение07.09.2022, 13:55 
Любой куб, в том числе тот, что равен разности кубов, можно представить как $x^3=x_1^3x_2^3$, если $x$ - составное число.
Если умножить $x$ на натуральное, простое $b$, получим: $(bx)^3=(bx_1)^3(x_2)^3=(x_1)^3(bx_2)^3$. То есть $b$ попадает в состав той или другой части $x$.
Если же, как в нашем случае, на куб накладываются условия, требующие нарушения естественного распределения $b$ между двумя скобками, мы не можем просто
игнорировать противоречие, его нужно устранить.

 
 
 
 Re: Соседние натуральные числа в теореме Ферма
Сообщение07.09.2022, 14:25 
Аватара пользователя
Ну допустим, что $x=x_1\cdot x_2\cdot ...\cdot x_n$ в разложении на простые. Тогда для простого $b$
$(bx)^3=1\cdot b\cdot b\cdot b\cdot x_1\cdot x_1\cdot x_1\cdot x_2\cdot x_2\cdot x_2\cdot ...\cdot x_n\cdot x_n\cdot x_n$
Можно по разному разбить это произведение на две группы. Вы утверждаете, что только $(1)$ и (всё остальное) подходят. Почему?

 
 
 
 Re: Соседние натуральные числа в теореме Ферма
Сообщение07.09.2022, 16:28 
gris

Может быть потому, что если выбросить $b$ и вернуться к исходному равенству, то справа окажется $z^3-y^3$. А их общим множителем является единица.

 
 
 
 Re: Соседние натуральные числа в теореме Ферма
Сообщение07.09.2022, 17:02 
Аватара пользователя
dick в сообщении #1564319 писал(а):
их
"Их" — это чей?

 
 
 
 Re: Соседние натуральные числа в теореме Ферма
Сообщение07.09.2022, 20:07 
"Их" это $z^3$ и $y^3$.

 
 
 
 Re: Соседние натуральные числа в теореме Ферма
Сообщение08.09.2022, 00:37 
Аватара пользователя
dick в сообщении #1564319 писал(а):
grisМожет быть потому, что если выбросить $b$ и вернуться к исходному равенству, то справа окажется $z^3-y^3$. А их общим множителем является единица.
Ну и что?

Вы можете точно сформулировать, в чём Вы видите противоречие? Я опишу ситуацию.

Три теоремы, на которые Вы явно или неявно ссылаетесь, формулируются так.

Теорема 1. Пусть $x,u,v,n$ — натуральные числа, и пусть выполняется равенство $x^n=uv$. Если числа $u$ и $v$ взаимно простые, то существуют такие натуральные $u_1$ и $v_1$, что $u=u_1^n$ и $v=v_1^n$.

Если $u$ и $v$ не взаимно простые, то теорема может быть неверна. Например, если $x=2$, $u=2$, $v=4$, $n=3$, то равенство $x^n=uv$ выполняется, но требуемых натуральных $u_1$ и $v_1$ нет.

Теорема 2. Пусть $a$ и $b$ — натуральные числа, из которых не более чем одно делится на $3$, и пусть $a>b$.
а) Число $a^2\pm ab+b^2$ делится на $3$ тогда и только тогда, когда $a\mp b$ делится на $3$.
б) Число $a^2\pm ab+b^2$ не делится на $3^2=9$.

Это легко доказывается, если заметить, что $a^2\mp ab+b^2=(a\pm b)^2\mp 3ab$. (Везде берутся либо только верхние знаки, либо только нижние.)

Теорема 3. Пусть $a$ и $b$ — взаимно простые натуральные числа, и пусть $a>b$. Тогда наибольший общий делитель чисел $a^2\pm ab+b^2$ и $a\mp b$ равен либо $1$, либо $3$.

Теперь рассмотрим уравнение $$x^3+y^3=z^3,\eqno(1)$$ в котором $x,y,z$ предполагаются натуральными числами.

Если числа $x,y,z$ имеют наибольший общий делитель $d>1$, то есть, существуют такие натуральные числа $x_1,y_1,z_1$, что $x=dx_1$, $y=dy_1$, $z=dz_1$, то подстановка в уравнение (1) даёт $(dx_1)^3+(dy_1)^3=(dz_1)^3$, что после школьных преобразований и сокращения общего множителя $d^3$ даёт уравнение $x_1^3+y_1^3=z_1^3$, которое отличается от (1) только обозначениями переменных. Но зато наибольший общий делитель чисел $x_1,y_1,z_1$ равен $1$, и легко убедиться, что любые два числа из трёх взаимно простые. Поэтому далее мы предполагаем, что все пары чисел $(x,y)$, $(x,z)$, $(y,z)$ в уравнении (1) являются взаимно простыми.

Переписав уравнение (1) в виде $x^3=z^3-y^3$ и разложив правую часть на множители по известной школьной формуле, получим $$x^3=(z-y)(z^2+zy+y^2).\eqno(2)$$
Если число $x$ делится на $3$, то в правой части уравнения (2) хотя бы один из двух множителей делится на $3$, а тогда по теореме 2 и второй тоже делится на $3$. Но в этом случает теорема 1 неприменима. Поэтому предположим, что $x$ не делится на $3$.

В таком случае множители в правой части взаимно простые, и по теореме 1 существуют такие натуральные числа $A_1$ и $A_2$, что $z-y=A_1^3$ и $z^2+zy+y^2=A_2^3$.
Теперь предположим, что мы умножили все числа $x,y,z$ на натуральное число $b>1$. Тогда вместо равенства (2) получим равенство $$(bx)^3=(bz-by)((bz)^2+(bz)(by)+(by)^2).\eqno(3)$$
Заметим, что $bz-by=b(z-y)$ и $(bz)^2+(bz)(by)+(by)^2=b^2(z^2+zy+y^2)$ имеют общий делитель $b>1$, поэтому к равенству (3) теорема 1 неприменима, то есть, $bz-by$ и $(bz)^2+(bz)(by)+(by)^2$ не обязаны быть кубами натуральных чисел.

Так где Вы видите противоречие?

 
 
 
 Re: Соседние натуральные числа в теореме Ферма
Сообщение08.09.2022, 12:53 
Все верно. Нужно было только рядом с (3) написать: $A_1A_2=x;  x^3=A_1^3A_2^3;  (bx)^3=(bA_1)^3A_2^3$ (4).
И сказать, что вот мол согласно Теоремы 1, $(z-y)$ это куб и (4) это подтверждает, а согласно (3) вовсе это не куб, а только основание куба, поскольку при умножении $x$ на $b$ может умножиться только на $b^1$.

 
 
 
 Re: Соседние натуральные числа в теореме Ферма
Сообщение08.09.2022, 13:55 
Аватара пользователя
dick в сообщении #1564385 писал(а):
согласно Теоремы 1, $(z-y)$ это куб
Да, и это у меня написано.

dick в сообщении #1564385 писал(а):
согласно (3) вовсе это не куб
Враньё.

dick в сообщении #1564385 писал(а):
а только основание куба
И это тоже враньё.

-- Чт сен 08, 2022 14:03:47 --

Сформулируйте, в чём состоит противоречие. Второй раз спрашиваю.

 
 
 
 Re: Соседние натуральные числа в теореме Ферма
Сообщение08.09.2022, 19:57 
Имеем равенство: $x^3=x_1^3x_2^3 (1)$; все числа натуральные, нечетные.
Если умножить основание степени слева и одно из оснований справа на простое натуральное число $b$, такое что $x$ не делится на $b$, то всегда слева по прежнему будет куб, а справа произведение двух кубов.
Этому противоречит преобразованное уравнение Ферма: $x^3=(z-y)((z-y)^2+3zy)$ (2); где обе скобки справа - кубы, поскольку при умножении на $b$ получим: $(bx)^3=(b(z-y))(b^2(z-y)^2+3b^2zy)$ (2.1);
То есть, скобки справа не являются кубами.

 
 
 
 Re: Соседние натуральные числа в теореме Ферма
Сообщение08.09.2022, 20:33 
Аватара пользователя
dick в сообщении #1564405 писал(а):
Этому противоречит преобразованное уравнение Ферма: $x^3=(z-y)((z-y)^2+3zy)$ (2); где обе скобки справа - кубы, поскольку при умножении на $b$ получим: $(bx)^3=(b(z-y))(b^2(z-y)^2+3b^2zy)$ (2.1);
То есть, скобки справа не являются кубами.
Объясните, почему обе скобки справа обязаны быть кубами. Теорема 1, на основе которой делается это утверждение, после умножения $x,y,z$ на $b>1$ становится неприменимой.
То, что Вы можете перегруппировать множители в произведении так, чтобы получилось произведение двух кубов, тривиально (куб всегда можно представить как произведение двух кубов, например, взяв один из них равным $1^3$) и не имеет отношения к формулам Абеля.
Я по-прежнему не вижу противоречия, поскольку никто, кроме Вас, не утверждал, что скобки $(bz-by)$ и $((bz)^2+(bz)(by)+(by)^2)$ обязаны быть кубами, а Вы это не доказали, это целиком плод вашей фантазии.

 
 
 
 Re: Соседние натуральные числа в теореме Ферма
Сообщение08.09.2022, 21:57 
Я Вам все объяснял, и не один раз. А если что-то забыли, можно перечитать.
Что касается перегруппировки множителей, то об этом речь и близко не идет.
А вот что касается плодов фантазии, то было бы конечно интересно увидеть плоды Вашей фантазии, в виде записи составного куба, у которого, после умножения на куб, кубы справа оказались бы не кубами (без перегруппировки конечно).

 
 
 
 Posted automatically
Сообщение08.09.2022, 23:37 
 i  Тема перемещена из форума «Великая теорема Ферма» в форум «Пургаторий (М)»
Причина переноса: похоже, что пора заканчивать.

 
 
 
 Re: Соседние натуральные числа в теореме Ферма
Сообщение08.09.2022, 23:46 
Аватара пользователя
dick в сообщении #1564411 писал(а):
в виде записи составного куба, у которого, после умножения на куб, кубы справа оказались бы не кубами (без перегруппировки конечно).
Утверждение точно не сформулировано, поэтому доказано или опровергнуто быть не может. Можно сделать и так, и эдак. Да Вы сами это и делаете, только один вариант объявляете "правильным", а другой "неправильным".

Кстати, формулировка у Вас некорректная (у меня на язык просится другое слово, но воспитание не позволяет). Нигде здесь нет кубов, которые "оказались бы не кубами". Выражение $z-y$ как было кубом, так и осталось кубом, но его умножили на $b$, и получилось другое выражение, которое не обязано быть кубом и не будет им, если $b$ не куб.

Вы докажи́те, что скобки $(bz-by)$ и $((bz)^2+(bz)(by)+(by)^2)$ обязаны быть кубами, тогда будет предмет для обсуждения. Теорема 1 здесь не работает, потому что она доказана только для взаимно простых сомножителей, а здесь они не взаимно простые. А перегруппировкой множителей здесь вполне можно сделать и три куба, и два куба, чем Вы и занимаетесь.

Мне ваша невменяемость уже изрядно наскучила. Если Вы будете продолжать в таком же духе, то я уйду из темы.

Вот, модератор успел раньше. Просить его вернуть тему не буду, потому что, честно говоря, не верю, что Вы вдруг исправитесь.

 
 
 [ Сообщений: 59 ]  На страницу Пред.  1, 2, 3, 4


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group