2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 51, 52, 53, 54, 55, 56, 57 ... 215  След.
 
 Re: Пентадекатлон мечты
Сообщение12.05.2022, 20:30 
EUgeneUS в сообщении #1554437 писал(а):
ИМХО, можно сообщать Хуго о минимальных 8, 9 и 10-ки найденных Вами и об 11-ки найденной Артемом с помощью Ваших программ - для включения в а-файл в A292580.
Уже сообщил.

-- 12 май 2022, 20:34 --

А вот двадцатка от меня пока ускользает. За время моего отсутствия комп нашел кучу двадцаток, содержащих 19 чисел по 48 делителей. Но ни одной искомой двадцатки.

 
 
 
 Re: Пентадекатлон мечты
Сообщение12.05.2022, 21:12 
Аватара пользователя
VAL в сообщении #1554441 писал(а):
А вот двадцатка от меня пока ускользает.


Может быть того... Тоже с ускорителями?

 
 
 
 Re: Пентадекатлон мечты
Сообщение13.05.2022, 05:12 
Аватара пользователя
EUgeneUS в сообщении #1554431 писал(а):
Информация от Артема (RTM): он запустил счёт

Здорово! Даже сам факт, что ещё 1 человек с мощными вычислительными возможностями подключился. Ну и с новым рекордом конечно же поздравляю.

VAL в сообщении #1553571 писал(а):
Зарядил 4 компа на поиск 18 чисел по 24 делителя и 20 чисел по 48 делителей.
Надеюсь, что к моему возвращению соответствующие цепочки найдутся.

Правильно ли я понимаю, что и 18-ка не нашлась ?

Правильно ли я понимаю, что при поиске 20-ки не использовалось 6-кратное Асмовское ускорение о котором говорил Dmitriy40 ?

 
 
 
 Re: Пентадекатлон мечты
Сообщение13.05.2022, 06:18 
Yadryara в сообщении #1554459 писал(а):
VAL в сообщении #1553571 писал(а):
Зарядил 4 компа на поиск 18 чисел по 24 делителя и 20 чисел по 48 делителей.
Надеюсь, что к моему возвращению соответствующие цепочки найдутся.

Правильно ли я понимаю, что и 18-ка не нашлась ?
Не нашлась.
Но тут другая история.
Удаленный сервер, на котором она искалась, упал вскоре после моего отъезда. Владелец обещает воскресить его через неделю.
Цитата:
Правильно ли я понимаю, что при поиске 20-ки не использовалось 6-кратное Асмовское ускорение о котором говорил Dmitriy40 ?
Угу.

 
 
 
 Re: Пентадекатлон мечты
Сообщение13.05.2022, 08:32 
Аватара пользователя
Готовлюсь к анонсированной перекомпиляции, в связи с чем прошу кое-что уточнить.

Dmitriy40 в сообщении #1553530 писал(а):
Yadryara в сообщении #1553508 писал(а):
Также интересно Ваше мнение, как переделать проги с подквадратного 41 на 43.
Заменить 7 на 8 в r=Set([])

У меня нету сета, но есть такая рекомендация:

"1. В генераторе паттернов M12mods1.gp изменить r=[1,2,3,4,5,7] на желаемый вариант выбора простых"

То есть самым простым решением здесь будет сделать r=[1,2,3,4,5,8] ?

Dmitriy40 в сообщении #1553530 писал(а):
PARI программы перебора придётся внимательно проверить чтобы там нигде не было явного указания на величину шага/модуля pp.mod, а он обязательно брался из файлов .v/.pat для каждого паттерна.

Один и тот же шаг у меня имеется в каждом файле .v

Примеры:

v=[289,722,507,4,2645,18,5887,32,2883,50,121,12,1681,98,45];
pp=Mod(433244595613314881725938841,540939213185547007102471200);

v=[289,722,507,4,2645,18,5887,32,5043,50,121,12,961,98,45];
pp=Mod(339215512682667753586062841,540939213185547007102471200);

Dmitriy40 в сообщении #1553530 писал(а):
Сейчас, для новых поисков, у меня так и есть (даже маску проверяемых чисел z[] формирую сразу в M12mods1.patterns), но как было тогда и чем сейчас пользуетесь Вы я не уверен.

А у меня z[] формируется не в этом файле, а в PereborPat13.gp командой

z=vector(#v,i,!issquare(v[i]));

И это, видимо, замедляет работу.

А в M12mods1.patterns у меня вот что:

v=[45,578,169,12,49,50,363,32,361,18,2645,28,2523,1922,1681];
pp=Mod(144081563277071051700698745,540939213185547007102471200);!M12-N2-31-123457

 
 
 
 Re: Пентадекатлон мечты
Сообщение13.05.2022, 12:59 
Yadryara в сообщении #1554465 писал(а):
То есть самым простым решением здесь будет сделать r=[1,2,3,4,5,8] ?
Да. И Set лучше бы добавить, просто для надёжности (защиты от опечаток, вспомните как у Вас получалось меньше паттернов в группе).
Yadryara в сообщении #1554465 писал(а):
Один и тот же шаг у меня имеется в каждом файле .v
Это хорошо, по идее так и должно быть.
Yadryara в сообщении #1554465 писал(а):
И это, видимо, замедляет работу.
Замедляет, но очень несущественно, числа то маленькие и на квадраты проверяются быстро (быстрее чем на простоту).
К тому же это делается лишь один раз на круг величиной step для каждого паттерна, т.е. в тысячи раз реже чем проверка больших чисел на простоту, потому замедление тонет в флуктуациях.

Yadryara в сообщении #1554459 писал(а):
Правильно ли я понимаю, что при поиске 20-ки не использовалось 6-кратное Асмовское ускорение о котором говорил Dmitriy40 ?
Ускорителей для 48 делителей не делалось, только ровно одна штука по конкретному паттерну для оценки ускорения и вообще эффективности.

 
 
 
 Re: Пентадекатлон мечты
Сообщение13.05.2022, 19:51 
Аватара пользователя
Посмотрел потенциальный "фронт работ" в файле Хуго.

Количества делителей с ненайденными цепочки можно разделить на три группы:

1. Короткие цепочки, максимальные известны.
Таких пять позиций.
Все максимальные для них найдены уважаемы VAL.
Возможно и более короткие (не указанные в файле) известны?

2. Короткие цепочки. Максимальные неизвестны.
Таких всего две. Наибольший интерес, представляет, конечно, $T(35,4) unknown$

3. Длинные цепочки. Количество делителей кратно $12$.

Подробная сводка под катом.

(Оффтоп)

Код:
1. Короткие (есть максимальная)

# L(33) = 5
T(33,4) unknown

# L(34) = 7
T(34,6) unknown

# L(38) = 7
T(38,6) unknown

# L(39) = 5
T(39,4) unknown

# L(46) = 7
T(46,6) unknown

2. Короткие (нет максимальной)

# L(35) in range 3..4
T(35,4) unknown
// манит и зовет ;), но никто не верит <!-- s:D --><img src=\\\\"{SMILIES_PATH}/icon_biggrin.gif\\\\" alt=\\\\":D\\\\" title=\\\\"Very Happy\\\\" /><!-- s:D -->

# L(45) in range 4..7
T(45,5) unknown

=== Длинные (количество делителей кратно 12) ===
# L(12) in range 17..31
T(12,18) unknown
// T(12,18) - ищется Владимиром (без ускорителей).
// Первая в последовательности, для которой нет оценки.

# L(18) in range 11..15
T(18,8) unknown
T(18,9) unknown
T(18,10) unknown
T(18,12) unknown
// улучшили до T(18,13) (с ускорителями)
// Все ли промежуточные цепочки найдены?

# L(24) in range 18..31
T(24,11) unknown
T(24,14) unknown
T(24,15) unknown
T(24,16) unknown
T(24,17) unknown
T(24,19) unknown
// T(24,19) - найдена Владимиром,
// T(24,20) - ищется Владимиром (без ускорилей)
// Все ли промежуточные цепочки найдены?

# L(30) in range 7..23
T(30,8) unknown
// /Улучшили до T(30,11)
// Промежуточные все найдены

# L(36) in range 8..31
T(36,9) unknown

# L(42) in range 6..21
T(42,7) unknown

# L(48) in range 9..31
T(48,10) unknown
//96 = 3 * 2^5


-- 13.05.2022, 20:08 --

Некоторые (наивные) соображения.

1. Из длинных цепочек наиболее перспективны вида $3 \cdot 2^n$. Так как в них нет "обязательных" высоких степеней простых. А простых в первой степени, наоборот много.
Из таких цепочек:
24 и 48 делителей сейчас ищет уважаемый VAL, но без ускорителей.
А следующая - 96 делителей. Там простых так много, что даже для цепочки длиной 31 можно расставить так, что каждое искомое число будет произведением двух, а то и трех простых (это по грубым прикидкам, без учета запретов модульной арифметики). А Хуго там продвинулся довольно таки не далеко.

2. Ещё не обрабатывали цепочки 72 и 84 делителей. И, собственного, всё с количеством делителей до 100.

3. Далее только увеличение вычислительных мощностей.
а) Грубо: рост вычислительных мощностей на порядок-полтора дает увеличение длины цепочки на 1 (или 2, если повезет).
б) Насколько понимаю, у уважаемого VAL мощностей как раз где-то на порядок больше, чем у всех остальных. в) Использование ускорителей даёт рост производительности на 2-3 порядка.

Так что:
а) после прохода с ускорителями цепочек с 96, 84, 72, 48 и 24, дальше улучшений у нас не будет.
б) если уважаемый VAL всё таки будет использовать ускорители, то хорошие шансы эти цепочки улучшить ещё на 1-2 позиции.
далее - только или расширять (на порядок-два) число участников, что вряд ли.
Или таки посмотреть в сторону счета на графических картах.

3. И всё таки, может как-то получится "зацепиться" за $T(35,4)$? :roll:

 
 
 
 Re: Пентадекатлон мечты
Сообщение13.05.2022, 21:16 
Аватара пользователя
Dmitriy40, благодарю. Буду не спеша разбираться, ибо всё-таки досчитал до запланированного:

\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline
 & ALL & 11+ & 11 & 12 & 13 & 14 & 15  \\
\hline          
\text{<49e35 11-23} & 51 & 2184 & 1777 & 353 & 48 & 6 &  \\
\text{<49e35 КМК37-11} & 52 & 2824 & 2214 & 525 & 77 & 8 &  \\\hline
\end{tabular}

EUgeneUS в сообщении #1554493 писал(а):
Посмотрел потенциальный "фронт работ" в файле Хуго.

Так он же не обновился пока. Если как раз сегодня обновится, то зачем же на старый ориентироваться?

 
 
 
 Re: Пентадекатлон мечты
Сообщение13.05.2022, 22:10 
Аватара пользователя
Yadryara в сообщении #1554504 писал(а):
Если как раз сегодня обновится, то зачем же на старый ориентироваться?

Так новых, неизвестных нам, максимальных цепочек там не появилось. Почему бы и не ориентироваться?

Yadryara в сообщении #1554504 писал(а):
Так он же не обновился пока.

Кстати, обновился уже. Хуго весьма пунктуален.

 
 
 
 Re: Пентадекатлон мечты
Сообщение13.05.2022, 22:41 
Мне упорно кажется что $M(70)=3$. Да и вообще все аналогичные где простое в первой степени лишь ровно одно.
Паттерны с $2$ левее $2^{2k}$ запрещены по модулю $8$.
В паттернах с $2$ правее $2^{2k}$ искомое большое простое вместе с $2^{2k}$ раскладывается на множители и соответственно они могут иметь решения в целых (если вместе с любой двойкой будет и $3^{2k}$, иначе похоже запрещены по модулю $6$), но не имеют решений в простых.
Надо бы это проверить поточнее.

 
 
 
 Re: Пентадекатлон мечты
Сообщение14.05.2022, 06:13 
Аватара пользователя
EUgeneUS в сообщении #1554509 писал(а):
Так новых, неизвестных нам, максимальных цепочек там не появилось. Почему бы и не ориентироваться?

А как можно узнать о том, что появилось, а что нет до публикации ?

EUgeneUS в сообщении #1554509 писал(а):
Кстати, обновился уже. Хуго весьма пунктуален.

Потому и не ориентироваться на старую версию. Подождать два часа и ориентироваться на новую.

EUgeneUS в сообщении #1554493 писал(а):
# L(18) in range 11..15
T(18,8) unknown
T(18,9) unknown
T(18,10) unknown
T(18,12) unknown
// улучшили до T(18,13) (с ускорителями)
// Все ли промежуточные цепочки найдены?
EUgeneUS в сообщении #1554493 писал(а):
# L(24) in range 18..31
T(24,11) unknown
T(24,14) unknown
T(24,15) unknown
T(24,16) unknown
T(24,17) unknown
T(24,19) unknown
// T(24,19) - найдена Владимиром,
// T(24,20) - ищется Владимиром (без ускорилей)
// Все ли промежуточные цепочки найдены?

И в новой версии уже есть ответы на эти вопросы. Зачем надо было цитировать старую версию вместо того, чтобы подождать два часа и процитировать новую ??

 
 
 
 Re: Пентадекатлон мечты
Сообщение14.05.2022, 07:25 
Аватара пользователя
Yadryara в сообщении #1554528 писал(а):
А как можно узнать о том, что появилось, а что нет до публикации ?


А как можно узнать, что публикация появится через два часа, пока она не появилась?
Никто не обещал, что файл будет обновляться ровно через месяц с точностью до часа.

А то, что в файле не появится "рекордных" (максимальных) цепочек, неизвестных в этой теме, был почти уверен.
Yadryara в сообщении #1554528 писал(а):
И в новой версии уже есть ответы на эти вопросы.

Хуго еще свои новые результаты добавил, но все они касаются "промежуточных" цепочек (не рекордных).

-- 14.05.2022, 07:28 --

Dmitriy40 в сообщении #1554517 писал(а):
Паттерны с $2$ левее $2^{2k}$ запрещены по модулю $8$.


Степень двойки может быть и нечетной: $9$ или $13$.
То есть это запрещает именно паттерны, а не саму цепочку. Для запрета цепочки варианты с нечетными степенями двойки тоже должны быть рассмотрены.

 
 
 
 Re: Пентадекатлон мечты
Сообщение14.05.2022, 09:42 
Аватара пользователя
Кстати, Хуго нашел 5(!) точных значений для A292580. Какой молодец.

 
 
 
 Re: Пентадекатлон мечты
Сообщение14.05.2022, 11:25 
Аватара пользователя
EUgeneUS в сообщении #1554529 писал(а):
Yadryara в сообщении #1554528 писал(а):
А как можно узнать о том, что появилось, а что нет до публикации ?


А как можно узнать, что публикация появится через два часа, пока она не появилась?

Отвечать вопросом на вопрос не самый лучший и не самый вежливый способ договориться.

Однако, отвечаю. Будущего мы точно знать не можем, да.

EUgeneUS в сообщении #1553307 писал(а):
То есть следующее обновление файла надо ждать около 13 мая.

Так почему не подождать два часа? А если нет обновления, то почему не подождать десяток часов, пока 13-е число не закончится на всей Земле? Зачем цитировать старый файл, если вот-вот появится новый?

EUgeneUS в сообщении #1554529 писал(а):
Yadryara в сообщении #1554528 писал(а):
И в новой версии уже есть ответы на эти вопросы.

Хуго еще свои новые результаты добавил, но все они касаются "промежуточных" цепочек (не рекордных).
Это я видел и что? Вы увидели ответы на Ваши вопросы в новой версии а-файла?

Компиляцию нового подкласса запустить удалось. Будет компилиться не меньше 10 часов. Длинную печать я закомментил, но, возможно, надо ещё меньше печатать.

 
 
 
 Re: Пентадекатлон мечты
Сообщение14.05.2022, 11:53 
EUgeneUS в сообщении #1554529 писал(а):
Степень двойки может быть и нечетной: $9$ или $13$.
То есть это запрещает именно паттерны, а не саму цепочку. Для запрета цепочки варианты с нечетными степенями двойки тоже должны быть рассмотрены.
Эти (и любые $2^{k>2}$) степени двойки тоже имеют остаток 0 по модулю 8 так что это вообще не влияет. А $2^2$ быть не может.

 
 
 [ Сообщений: 3218 ]  На страницу Пред.  1 ... 51, 52, 53, 54, 55, 56, 57 ... 215  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group