2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 32, 33, 34, 35, 36, 37, 38 ... 42  След.
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение23.11.2021, 13:56 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
Wolfram Mathematica решает и даёт
Код:
{{x -> ConditionalExpression[55143663708106 + 381099389413219 C[1], C[1] \[Element] Integers]}}
"\[Element]" кодирует символ "$\in$".

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение23.11.2021, 14:47 


01/07/19
244
Dmitriy40 в сообщении #1540243 писал(а):
Yury_rsn
Вот кстати заметьте: если убрать тройки, то так легко восстановить не получится.

Да, с тройками лучше.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение23.11.2021, 18:49 


31/12/10
1555
Dmitriy40
Someone
Спасибо.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение23.11.2021, 20:26 


23/02/12
3357
Dmitriy40 в сообщении #1540243 писал(а):
? forstep(a=9439,9439+22,2, print1(factor(a)[1,1],", "))
9439, 3, 7, 5, 3, 11, 13, 3, 5, 7, 3, 9461,[/code]
Интересно, если запустить такую же программу на симметричном интервале такой же длины, то простые делители также встанут из соображений симметрии?

Dmitriy40 в сообщении #1540243 писал(а):
[code]
? v=[3, 7, 5, 3, 11, 13, 3, 5, 7, 3]; t=Mod(1,2); for(i=1,#v, t=chinese(t, Mod(v[i]-i*2, v[i]))); t
%1 = Mod(9439, 30030)
А адрес начала второго максимального интервала?

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение24.11.2021, 00:16 
Заслуженный участник


20/08/14
11771
Россия, Москва
vicvolf в сообщении #1540275 писал(а):
Интересно, если запустить такую же программу на симметричном интервале такой же длины, то простые делители также встанут из соображений симметрии?
vicvolf в сообщении #1540275 писал(а):
А адрес начала второго максимального интервала?
Прошу:
Код:
? v=[3, 7, 5, 3, 13, 11, 3, 5, 7, 3]; t=Mod(1,2); for(i=1,#v, t=chinese(t, Mod(v[i]-i*2, v[i]))); t
%1 = Mod(20569, 30030)
? forstep(a=20569,20569+22,2, print1(factor(a)[1,1],", "))
67, 3, 7, 5, 3, 13, 11, 3, 5, 7, 3, 59,
Разумеется я не стал ничего считать, а взял список минимальных простых делителей для всех максимальных интервалов для каждого примориала из файла moduli.txt из приложения к статье в архиве.орг, они там есть по 251#. Хотя в данном случае, когда интервалы симметричны, можно было проще: $30030-9439-22=20569$. Ну и по делителям сразу видно что 11 и 13 встречаются по разу и могут произвольно переставляться.

-- 24.11.2021, 00:22 --

vicvolf
PS. Вас не учили что количество открывающих тегов должно быть равно количеству закрывающих? Имейте уважение к читателям и цитируйте аккуратнее.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение24.11.2021, 21:45 


23/02/12
3357
Dmitriy40 в сообщении #1540299 писал(а):
? forstep(a=20569,20569+22,2, print1(factor(a)[1,1],", ")) 67, 3, 7, 5, 3, 13, 11, 3, 5, 7, 3, 59,[/code]
А при чем тут делители 67 и 59?

Цитата:
Ну и по делителям сразу видно что 11 и 13 встречаются по разу и могут произвольно переставляться.

Не произвольно, а зеркально симметрично.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение24.11.2021, 23:41 
Заслуженный участник


20/08/14
11771
Россия, Москва
vicvolf в сообщении #1540427 писал(а):
А при чем тут делители 67 и 59?
Ограничители интервала, просто чтобы видеть что интервал и правда ни влево ни вправо не продолжается. Ну и левое число (20569) считается как бы началом интервала, а правое (20591) концом, так что оба вполне при делах.

UPD.
PS. Это был последний раз когда отвечаю на плохо оформленную цитату, в следующий раз ответа можете и не дождаться. Прошу быть внимательнее.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение25.11.2021, 13:30 


23/02/12
3357
Dmitriy40 в сообщении #1540435 писал(а):
Ну и левое число (20569) считается как бы началом интервала, а правое (20591) концом.
Вот так и пишите, а не ерунду типа 67 и 59.

Цитата:
Это был последний раз когда отвечаю на плохо оформленную цитату, в следующий раз ответа можете и не дождаться. Прошу быть внимательнее.
Не надо строить из себя модератора.

-- 25.11.2021, 13:36 --

Yury_rsn
Вы обратили внимание на функцию $w(n)$ Defenition 1.5 и Corollary 1.2.?

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение25.11.2021, 13:59 
Заслуженный участник


09/05/12
25179
vicvolf в сообщении #1540511 писал(а):
Не надо строить из себя модератора.
 !  Ок, тогда более официально: vicvolf, предупреждение за систематическое неправильное оформление цитат. Будете продолжать наплевательски относиться к тому, что видят собеседники - забаню.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение25.11.2021, 14:53 
Заслуженный участник


20/08/14
11771
Россия, Москва
vicvolf в сообщении #1540511 писал(а):
Вот так и пишите, а не ерунду типа 67 и 59.
1. Я сам разберусь что и как мне писать. Вы предварительных требований к оформлению не выдвигали.
2. Это не ерунда, эти числа не простые и имеют вот такие простые делители. И для 13# они являются ограничителями. Мне это интересно видеть/знать. Если Вам не нужно, то можете чуть подправить программу очевидным образом.

(Оффтоп)

Только собрался сказать что модератора не строю, ведь ни сообщение ни тема в карантин не отправились, просто кривые цитаты лично мне "режут глаз" и раздражают неправильностью, а моё право отвечать лишь на что хочу не противоречит правилам форума, как появился модератор с официальным заявлением. Всё, теперь точно вовек не отмажусь что не я самый главный на форуме ... :facepalm:

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение25.11.2021, 18:37 


23/02/12
3357
vicvolf в сообщении #1540511 писал(а):
Вы обратили внимание на функцию $w(n)$ Defenition 1.5
Перевод Definition 1.5.

Определение 1.5. Сводная функция Якобсталя.
При n 2 N> 1 конденсированная функция Якобсталя w (n) определяется как наибольшая
длина последовательности последовательных целых чисел, которые не являются взаимно простыми с произведением
нечетные простые числа через pn.
w (n) = j (pn # / 2).
Другими словами, w (n) - наибольшая длина последовательности последовательных целых чисел.
каждое из которых делится на одно из нечетных простых чисел, равных pn.

В связи с этим определением для $p_n=13,w(n)=13-3=10$, $p_n=19,w(n)=19-3=16$, а почему для $p_n=17,w(n)=12$, ведь $17-3=14$?

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение25.11.2021, 18:59 
Заслуженный участник


20/08/14
11771
Россия, Москва
Потому что она равна половине интервала минус 1. Для $n=19,\; n\#=19\#,\; d=34,\; \omega(n)=d/2-1=34/2-1=16$. Пополам потому что без чётных, а минус один потому что числа только внутри интервала.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение25.11.2021, 19:28 


23/02/12
3357
Dmitriy40 в сообщении #1540550 писал(а):
Потому что она равна половине интервала минус 1. Для $n=19,\; n\#=19\#,\; d=34,\; \omega(n)=d/2-1=34/2-1=16$. Пополам потому что без чётных, а минус один потому что числа только внутри интервала.
Нет от максимальной длины интервала $h(n)$ не надо. Это из формулы $h(n)=2w(n)+2$ следует, что $w(n)=h(n)/2-1$, которая выводится в отдельном утверждении. А просто из определения $w(n)$, которое я перевел? Я хочу определять $w(n)$ не зная $h(n)$.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение25.11.2021, 20:08 
Заслуженный участник


20/08/14
11771
Россия, Москва
vicvolf в сообщении #1540554 писал(а):
Я хочу определять $w(n)$ не зная $h(n)$.
Учитывая что они однозначно связаны, то без разницы что через что определять. И уж точно одну вычислять не проще другой. Подсчитать количество нечётных чисел ($\omega(n)$) в интервале с концами на нечётных числах ровно так же сложно как и число всех чисел ($h(n)-1$) в этом же интервале. Это же очевидно.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение25.11.2021, 21:25 


23/02/12
3357
Понял $w(n)$ равно общему количеству простых делителей на интервале с учетом их кратности.
Проверьте на файле https://arxiv.org/src/1611.03310v2/anc/moduli.txt

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 624 ]  На страницу Пред.  1 ... 32, 33, 34, 35, 36, 37, 38 ... 42  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group