2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 последовательность равновероятных битов
Сообщение20.10.2021, 21:50 
Заслуженный участник


18/09/21
1768
Дана неограниченная последовательность битов распределенных случайно и независимо друг от друга.
1 выпадает с вероятностью $p$ и 0 выпадает с вероятностью $1-p$. Само $p$ неизвестно и оно не меняется.
Надо сгенерировать другую последовательность нулей и единиц, в которой они распределены случайно и независимо строго с вероятностью 50 на 50.

 Профиль  
                  
 
 Re: последовательность равновероятных битов
Сообщение20.10.2021, 21:52 
Заслуженный участник
Аватара пользователя


05/12/09
1813
Москва
Старый прикол с монетками.

 Профиль  
                  
 
 Re: последовательность равновероятных битов
Сообщение20.10.2021, 22:45 
Заслуженный участник
Аватара пользователя


16/07/14
9306
Цюрих
alisa-lebovski в сообщении #1535652 писал(а):
Старый прикол с монетками
Прикол с монетами это если $p$ известно. Тут нам, видимо, нужно найти функцию $f: \{0, 1\}^\mathbb N \to \{0, 1\}^\mathbb N$ со следующим свойством. Назовем слово $x$ плохим $\exists n \forall N \exists y: x[:N] = y[:N] \wedge f(x)[n] \neq f(y)[n]$. Тогда для любого $p$ мера множества всех плохих последовательностей должна быть равна нулю.
Это эквивалентно нахождению двух множеств конечных слов $A$ и $B$, таких что ни одно из слов из $A \cup B$ не является префиксом другого, и при этом для любого $p$ вероятность получить последовательность с префиксом из $A$ равна $\frac{1}{2}$ и с префиксом из $B$ тоже $\frac{1}{2}$.

Не уверен, что ТС имел в виду именно это; zykov, можете подтвердить или опровергнуть? Впрочем такая задача выглядит небезынтересной в любом случае.

UPD: написано почти верно, но меня совершенно не в ту степь понесло.

 Профиль  
                  
 
 Re: последовательность равновероятных битов
Сообщение20.10.2021, 22:55 
Заслуженный участник
Аватара пользователя


05/12/09
1813
Москва
mihaild в сообщении #1535657 писал(а):
Прикол с монетами это если $p$ известно.
Нет, не известно. Классическая задача, как бросаниями неправильной монеты смоделировать правильную.

 Профиль  
                  
 
 Re: последовательность равновероятных битов
Сообщение20.10.2021, 23:19 
Заслуженный участник


18/09/21
1768
mihaild
Боюсь, что не полностью понимаю. Но мне кажется Вы усложняете. Там довольно просто можно сделать (но можно и посложнее сделать).
mihaild в сообщении #1535657 писал(а):
найти функцию $f: \{0, 1\}^\mathbb N \to \{0, 1\}^\mathbb N$

Тут Вы имеете ввиду что из последовательности длины $N$ сделать другую последовательность длины $N$?
Это просто невозможно (возьмите например очень маленький $p$).
Новая последовательность будет короче (поэтому упоминается "неограниченная последовательность"). Это кстати уже большая подсказка.

 Профиль  
                  
 
 Re: последовательность равновероятных битов
Сообщение20.10.2021, 23:25 
Заслуженный участник
Аватара пользователя


16/07/14
9306
Цюрих

(Оффтоп)

alisa-lebovski в сообщении #1535658 писал(а):
Классическая задача, как бросаниями неправильной монеты смоделировать правильную.
Да, это я что-то совсем не в ту сторону думать начал, о какой-то смеси этой задачи и получения неправильной монеты по правильной.


-- 20.10.2021, 23:27 --

zykov в сообщении #1535659 писал(а):
Тут Вы имеете ввиду что из последовательности длины $N$ сделать другую последовательность длины $N$?
Нет, это значит что функция из бесконечных последовательностей делает бесконечные последовательности. Ну и что она рано или поздно определится с любым элементом, а не потребует смотреть бесконечно далеко.
Но в любом случае я действительно зря тот пост написал, задача понятная и классическая.

 Профиль  
                  
 
 Re: последовательность равновероятных битов
Сообщение20.10.2021, 23:43 


10/03/16
4444
Aeroport
alisa-lebovski в сообщении #1535658 писал(а):
Нет, не известно. Классическая задача, как бросаниями неправильной монеты смоделировать правильную.

Расскажите, please!

 Профиль  
                  
 
 Re: последовательность равновероятных битов
Сообщение21.10.2021, 05:37 


21/05/16
4292
Аделаида
ozheredov в сообщении #1535664 писал(а):
Расскажите, please!

Бросаем монету бесконечное число раз по два раза. Каждый раз, когда выпадает сначала орёл, а затем решка, записываем 1, когда сначала решка, а затем орёл - 0. Иначе ничего не делаем.

 Профиль  
                  
 
 Re: последовательность равновероятных битов
Сообщение21.10.2021, 17:20 


10/03/16
4444
Aeroport
kotenok gav
В смысле, это сгенерирует "равновероятную" и "независимую в совокупности" последовательность битов безотносительно к вероятности выпадения орла?

 Профиль  
                  
 
 Re: последовательность равновероятных битов
Сообщение21.10.2021, 18:31 
Заслуженный участник
Аватара пользователя


05/12/09
1813
Москва
ozheredov в сообщении #1535761 писал(а):
В смысле, это сгенерирует
А какие сомнения?

 Профиль  
                  
 
 Re: последовательность равновероятных битов
Сообщение21.10.2021, 19:26 
Заслуженный участник


18/09/21
1768
kotenok gav в сообщении #1535685 писал(а):
Каждый раз, когда выпадает сначала орёл, а затем решка, записываем 1, когда сначала решка, а затем орёл - 0.
Да, верно.
Это самое простое, что можно сделать.
Незавсисмо от $p$ двойки "01" и "10" выпадают с одинаковой вероятностью $p(1-p)$ каждая. Если для одной выдать "0", для другой "1", то в этой выходной последовательности они будут равновероятны. При этом двойки "11" и "00" просто выбрасываются - для них никакой выход не генерируется.
Важно: двойки должны быть (1,2), (3,4), (5,6), ..., а не (1,2), (2,3), (3,4),...

Интересно посмотреть какой КПД такого алгоритма - сколько в среднем новых битов он выдаёт на один входной бит.
Здесь, очевидно, это $\gamma = 2p(1-p)$.
В лучшем случае это $\frac12$, если $p=\frac12$. При других $p$ оно будет меньше, плавно падая до нуля по параболе при $p=0,1$.

Закономерный вопрос, а можно ли сделать КПД получше?
Если вместо двоек брать более длинные подпоследовательности, то КПД в основном будет улучшатся (иногда не меняется, как при пререходе от 2 к 3).
Там тоже надо поотдельности рассмотреть случаи, когда в последовательности какое-то фиксированное количество единиц (например при длине 4 будут случаи - 1 единица/4 варианта, 2 единицы/6 вариантов, 3 единицы/4 варианта). Все эти варианты будут равновероятны внутри одного случая. Количество вариантов - это количество сочетаний $C_n^k$.
Значит для произвольной половины вариантов можно выдать "1", для другой половины "0" (если количество вариантов было нечётное, то какой-то один из них просто выбросить).
Наиболее оптимальными будут длины, когда все биномиальные коэффициенты чётные (кроме единиц на концах). Это например верно для длин равных степеням двойки $n=2^m$.
В таком случае КПД будет $\gamma = 1 - p^n - (1-p)^n$.
Тут КПД будет приближатся к единице. И не только при $p$ около $\frac12$, но и для $p$ очень маленьких или очень близких к 1.
Просто надо взять достаточно длинную подпоследовательность, чтобы вероятность что все нули или все единицы была близка к нулю.

 Профиль  
                  
 
 Re: последовательность равновероятных битов
Сообщение21.10.2021, 19:51 


10/03/16
4444
Aeroport
alisa-lebovski
Да-да, точно )
zykov
Спасибо за подробное объяснение

 Профиль  
                  
 
 Re: последовательность равновероятных битов
Сообщение22.10.2021, 02:08 
Заслуженный участник


04/05/09
4596
zykov в сообщении #1535782 писал(а):
В таком случае КПД будет $\gamma = 1 - p^n - (1-p)^n$.
Тут КПД будет приближатся к единице.
А вы не забыли учесть, что использовали больше бит исходой последовательности?

 Профиль  
                  
 
 Re: последовательность равновероятных битов
Сообщение22.10.2021, 02:31 
Заслуженный участник


18/09/21
1768
venco в сообщении #1535849 писал(а):
А вы не забыли учесть, что использовали больше бит исходой последовательности?
Точно, забыл.
Тут $\gamma$ - это только вероятность сгенерировать один бит из одной подпоследовательности.
КПД для двойки будет $p(1-p)$, максимум $\frac14$ при $p=\frac12$.
Для более длинной подпоследовательности будет $\gamma = \frac{1-p^n-(1-p)^n}{n}$.
Т.е. КПД будет только ухудшаться.

 Профиль  
                  
 
 Re: последовательность равновероятных битов
Сообщение22.10.2021, 03:34 
Заслуженный участник


04/05/09
4596
zykov в сообщении #1535850 писал(а):
КПД для двойки будет $p(1-p)$, максимум $\frac14$ при $p=\frac12$.
На самом деле можно повысить КПД до почти $2p(1-p)$ для $p\approx\frac12$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 20 ]  На страницу 1, 2  След.

Модераторы: Karan, Toucan, PAV, maxal, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mikhail_K


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group