Дайте определение "дискретности"
Дискретность в топологии - это множество изолированных друг от друга точек. Оно вполне применимо и к числам, представляемым как точки на числовой прямой, и вообще ко всему, элементы чего как-то отделены друг от друга.
В чём, собственно, "дискретность" рациональных чисел, если между любыми двумя неравными рациональными числами всегда можно вставить третье рациональное число?
То, что вы сказали, называется всюду плотностью. А если добавить, что между любыми двумя неравными рациональными можно вставить иррациональное, то это уже дискретность (отдельность друг от друга).
Кстати чтобы доказать счетность рациональных чисел не обязательно предъявлять явную нумерацию. Достаточно заметить, что любое рациональное число можно записать с помощью символов конечного алфавита (10 цифр, дробная черта и минус).
Ну, это вообще-то верно, но не вполне честно )) Ведь это и есть _определение_ рационального числа - представимость в виде обыкновенной дроби. Доказательство типа "ибо таково определение". Хотя, впрочем, в данном случае оно законно... Если, конечно, вставить слово "конечного" - "...конечного числа символов..." Ибо числитель и/или знаменатель могут быть сколь угодно велики, но всегда конечны. А так-то и Пи записывается с помощью десяти цифр и запятой.
Я к тому, что далеко не всякий сходу изобретет способ, подобный спиральному обходу, для, скажем, узлов трехмерной целочисленной решетки, а уж тем более n-мерной. Однако, дискретность множества этих точек стопудово указывает на их счетность, т.е. иного доказательтсва, кроме факта дискретности, как бэ и не требуется. Разве не так?