2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Законы сохранения в метриках Керра и Керра-Ньюмана
Сообщение20.05.2020, 13:45 
Утундрий в сообщении #1464080 писал(а):
а поработать-то можно вообще с чем угодно

Ну предложите что-нибудь в рамках геометрической парадигмы ... и чтобы был некий инвариант.

 
 
 
 Re: Законы сохранения в метриках Керра и Керра-Ньюмана
Сообщение20.05.2020, 13:48 
Аватара пользователя
bayak в сообщении #1464100 писал(а):
Ну предложите что-нибудь
Вы ждёте, что я сейчас эту проблему решу? Я просто задал вопрос и жду ответа, чтобы понять, как продолжать беседу.

 
 
 
 Re: Законы сохранения в метриках Керра и Керра-Ньюмана
Сообщение20.05.2020, 14:00 
Утундрий, нет не жду... поэтому и предложил вам гениальную (ну, пусть просто замечательную) идею с компактификацией изотропного конуса.

 
 
 
 Re: Законы сохранения в метриках Керра и Керра-Ньюмана
Сообщение20.05.2020, 14:03 
 !  bayak, бан на неделю за очередное возобновление темы из Пургатория. "Предложение гениальных идей" в чужих темах им тоже является.

 
 
 
 Re: Законы сохранения в метриках Керра и Керра-Ньюмана
Сообщение20.05.2020, 16:32 
schekn в сообщении #1464050 писал(а):
И физические результаты не зависели бы от выбора плоского "фона".

И не зависят.

schekn в сообщении #1464050 писал(а):
Автор темы похоже наткнулся на то же, на что и я пару лет назад, когда
я одной теме пытался фон строго привязать к метрике в ОТО.

Нет.

 
 
 
 Re: Законы сохранения в метриках Керра и Керра-Ньюмана
Сообщение20.05.2020, 16:40 
Аватара пользователя
Утундрий в сообщении #1464101 писал(а):
Я просто задал вопрос и жду ответа, чтобы понять, как продолжать беседу.
Уточню, от KVV. А то он, быть может, предпочёл этого не заметить.

 
 
 
 Re: Законы сохранения в метриках Керра и Керра-Ньюмана
Сообщение20.05.2020, 16:52 
Утундрий в сообщении #1464062 писал(а):
Вопрос, что вы собираетесь сохранять. Как обычно, интегралы от чего-то там по пространственно-подобным гиперповерхностям?

Этот?

 
 
 
 Re: Законы сохранения в метриках Керра и Керра-Ньюмана
Сообщение20.05.2020, 16:54 
Аватара пользователя
Да. Этот.

 
 
 
 Re: Законы сохранения в метриках Керра и Керра-Ньюмана
Сообщение20.05.2020, 16:56 
schekn в сообщении #1464084 писал(а):
Я уже говорил, что приверженец полевой биметрической теории и там нет проблем с законами сохранения.
А требовать от ОТО того же нельзя в принципе. Надо с этим жить. Правда Epros высказал мнение,
что тогда в ОТО можно построить вечный двигатель. Жаль , что мы не закончили с вселенной Гёделя ( я туплю),
может там можно было это сделать.
Вообще то из факта что "при наличии законов сохранения нельзя построить вечный двигатель" отнюдь логически не следует, что при их отсутствии его всегда построить можно. Если кто-то утверждает такое - то пусть предъявит сей вечный двигатель в смысле ОТО (заодно с четким определением что именно он называет "вечным двигателем").

 
 
 
 Re: Законы сохранения в метриках Керра и Керра-Ньюмана
Сообщение20.05.2020, 17:01 
Утундрий в сообщении #1464163 писал(а):
Да. Этот.

Изначально это интегралы по 4-объему от свертки $T_{tot}$ с вектором Киллинга:
$$\int (T_{tot}^{\mu\nu}\xi_{\mu}^{(n)})_{;\nu}\sqrt{-\gamma}d\Omega$$
А потом, да, сводятся к интегралам по пространственно-подобным гиперповерхностям.

 
 
 
 Re: Законы сохранения в метриках Керра и Керра-Ньюмана
Сообщение20.05.2020, 17:03 
Аватара пользователя
KVV
Спасибо. Ещё одно уточнение: в случае метрики Ш. интегрировать будем только по внешней области?

 
 
 
 Re: Законы сохранения в метриках Керра и Керра-Ньюмана
Сообщение20.05.2020, 17:07 
Утундрий
Велкам. Вы имеете в виду внешнюю по отношению к горизонту область?

 
 
 
 Re: Законы сохранения в метриках Керра и Керра-Ньюмана
Сообщение20.05.2020, 17:10 
Аватара пользователя
Именно, внешнюю по отношению к горизонту область. В которой гиперповерхности $t=const$ являются пространственно-подобными.

 
 
 
 Re: Законы сохранения в метриках Керра и Керра-Ньюмана
Сообщение20.05.2020, 17:11 
Вроде да, в итоге поверхностный интеграл по пространственной бесконечности этой области.

 
 
 
 Re: Законы сохранения в метриках Керра и Керра-Ньюмана
Сообщение20.05.2020, 17:45 
Аватара пользователя
Понятно. И ограничиваемся мы только статическими конфигурациями, когда интеграл от какого угодного выражения не зависит от выбора $t=const$. Смысл же деятельности состоит в том, чтобы подобрать такое выражение, которое в некоторых, произвольно угаданных координатах, даст эстетически Вас удовлетворяющее значение вышеупомянутого интеграла?

 
 
 [ Сообщений: 70 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group