Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия, Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
Последний раз редактировалось maximkarimov 27.07.2018, 13:59, всего редактировалось 1 раз.
Известно, что для произвольного набора натуральных чисел сумма квадратов не равна квадрату суммы. Обозначим отношение таких величин для i-набора как i-Y. Вопросы: 1. Две величины i-Y равны если и только если i-наборы равны? 2. Если ответ на п.1 - "нет", то можно ли определить такие условия (ограничения) на произвольную пару i-наборов, чтобы для множества всех таких наборов ответ был "да"?
Т.е. набора из натуральных чисел? Или что-то еще? Уточните хотя бы один раз.
Каковы Ваши соображения по данным вопросам?
Lia
Posted automatically
27.07.2018, 14:25
i
Тема перемещена из форума «Математика (общие вопросы)» в форум «Карантин» по следующим причинам:
- непонятно, к чему относится заголовок, - неправильно набраны формулы (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы); - отсутствуют собственные содержательные попытки решения задач(и), - остальное см. выше.