2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Вероятность использования всех шаров за 4 игры
Сообщение05.02.2018, 22:34 
В коробке 12 различимых шаров. В каждой игре участвуют 3 шара, после чего они возвращаются в коробку. С какой вероятностью за 4 партии поучаствуют все шары?

Следовательно, ни в какой из партий не повторяется ни один шар: каждый раз мы берем новый.
Задача связана с темой сложения/умножения вероятностей, так что наиболее комфортное решение, по идее, должно быть с помощью этих двух теорем.

Не совсем понимаю, какие события взять, чтобы удобно использовать их в сумме/произведении, весь вечер пишу какую-то белиберду. Возможно, все-таки, можно пойти и не через сумму/произведение вероятностей, если это будет логичным.

 
 
 
 Re: Вероятность использования всех шаров за 4 игры
Сообщение05.02.2018, 23:14 
Аватара пользователя
А рассмотрение каких событий Вам кажется наиболее естественным?

 
 
 
 Re: Вероятность использования всех шаров за 4 игры
Сообщение06.02.2018, 01:32 
Аватара пользователя
Вероятность равна произведению вероятностей вытащить три белых из коробки с девятью белыми, на три белых из коробки с шестью белыми и на три белых из коробки с тремя белыми. Разве нет? Ну, её ещё можно для полноты картины помножить на вероятность вытащить три белых из коробки с 12-ю белыми, но такая равна единице.

По-другому вроде и не решить.

Другими словами надо рассмотреть четыре эксперимента, итоговый успех определяется успехом каждого из четырёх. Отсюда произведение. Причём ситуация от эксперимента к эксперименту меняется. Причём нам даже не обязательно, чтобы была одна коробка. Лишь бы условия каждого эксперимента соответствовали исходному условию.

 
 
 
 Re: Вероятность использования всех шаров за 4 игры
Сообщение06.02.2018, 05:21 
Аватара пользователя
B@R5uk в сообщении #1290471 писал(а):
Вероятность равна произведению вероятностей вытащить три белых из коробки с девятью белыми, на три белых из коробки с шестью белыми и на три белых из коробки с тремя белыми. Разве нет?

Нет.

Кроме того, не стоит забывать, что здесь, в ПР/Р, нельзя давать полные решения. По крайней мере, пока ТС сам не решит.

 
 
 
 Re: Вероятность использования всех шаров за 4 игры
Сообщение07.02.2018, 21:09 
Yadryara в сообщении #1290480 писал(а):
B@R5uk в сообщении #1290471 писал(а):
Вероятность равна произведению вероятностей вытащить три белых из коробки с девятью белыми, на три белых из коробки с шестью белыми и на три белых из коробки с тремя белыми. Разве нет?

Нет.

Кроме того, не стоит забывать, что здесь, в ПР/Р, нельзя давать полные решения. По крайней мере, пока ТС сам не решит.


Почему нет?

Мне как раз только такая идея самому и приходила в голову для интерпретации задачи.
Еще были мысли с тем же разделением 4-х игр на 4 различных события, в которых достаются помеченные шары. Разметить все 12 шаров на 4 цвета по 3 шара (условно белый, черный, красный, зеленый), учесть все перекраски, и умножить на вероятности четырех событий (достать 3 шара цветом i).
У вероятностей всех четырех событий одинаковый знаменатель - общее количество вариантов достать 3 шара из 12 4 раза.

Но, откровенно говоря, я боюсь в таком случае использовать неправильную модель и замарать весь опыт. А чего-то, что поможет работать просто с различными шарами, мне в голову за несколько дней так и не пришло, старался специально форум не посещать еще какое-то время.

 
 
 
 Re: Вероятность использования всех шаров за 4 игры
Сообщение07.02.2018, 22:06 
Аватара пользователя
Andrei333 в сообщении #1290423 писал(а):
В коробке 12 различимых шаров. В каждой игре участвуют 3 шара, после чего они возвращаются в коробку.

Предлагаю решить пошагово. Вначале Вы с вероятностью $1$ вытащите какие-то $3$ шара. Затем вернёте их в коробку. Какова теперь вероятность вытащить шар, ранее не достававшийся?

 
 
 
 Re: Вероятность использования всех шаров за 4 игры
Сообщение07.02.2018, 22:33 
Yadryara в сообщении #1290960 писал(а):
Andrei333 в сообщении #1290423 писал(а):
В коробке 12 различимых шаров. В каждой игре участвуют 3 шара, после чего они возвращаются в коробку.

Предлагаю решить пошагово. Вначале Вы с вероятностью $1$ вытащите какие-то $3$ шара. Затем вернёте их в коробку. Какова теперь вероятность вытащить шар, ранее не достававшийся?


Вторая игра: $\binom{9}{3}$ / $\binom{12}{3}$, что есть $\frac{9}{12}$*$\frac{8}{11}$*$\frac{7}{10}$;
Третья игра: $\binom{6}{3}$ / $\binom{12}{3}$;
Четвертая игра: $\binom{3}{3}$ / $\binom{12}{3}$ = $1$ / $\binom{12}{3}$

И эти вероятности перемножить для ответа?

 
 
 
 Re: Вероятность использования всех шаров за 4 игры
Сообщение07.02.2018, 22:38 
Аватара пользователя
Andrei333 в сообщении #1290963 писал(а):
И эти вероятности перемножить для ответа?
А что там в теории сказано насчёт умножения? В каких случаях нужно умножать вероятности?

 
 
 
 Re: Вероятность использования всех шаров за 4 игры
Сообщение07.02.2018, 22:47 
Someone в сообщении #1290964 писал(а):
Andrei333 в сообщении #1290963 писал(а):
И эти вероятности перемножить для ответа?
А что там в теории сказано насчёт умножения? В каких случаях нужно умножать вероятности?

Умножение = "И", сложение = "ИЛИ".

 
 
 
 Re: Вероятность использования всех шаров за 4 игры
Сообщение07.02.2018, 22:50 
Аватара пользователя
Andrei333 в сообщении #1290963 писал(а):
Вторая игра: $\binom{9}{3}$ / $\binom{12}{3}$, что есть $\frac{9}{12}$*$\frac{8}{11}$*$\frac{7}{10}$;
Третья игра: $\binom{6}{3}$ / $\binom{12}{3}$;
Четвертая игра: $\binom{3}{3}$ / $\binom{12}{3}$ = $1$ / $\binom{12}{3}$

Это верно, ПМСМ.

 
 
 
 Re: Вероятность использования всех шаров за 4 игры
Сообщение07.02.2018, 22:54 
Аватара пользователя
Andrei333 в сообщении #1290967 писал(а):
Умножение = "И", сложение = "ИЛИ".
Что значит — "И", "ИЛИ"? А формулы-то написать можно? И условия их применимости. Там есть какие-то термины типа "сумма событий", "произведение событий", "противоположное событие", "несовместные события", "независимые события", "условная вероятность"… И, кстати, Вы студент или школьник?

 
 
 
 Re: Вероятность использования всех шаров за 4 игры
Сообщение07.02.2018, 23:09 
Yadryara, спасибо!

Someone в сообщении #1290971 писал(а):
Andrei333 в сообщении #1290967 писал(а):
Умножение = "И", сложение = "ИЛИ".
Что значит — "И", "ИЛИ"? А формулы-то написать можно? И условия их применимости. Там есть какие-то термины типа "сумма событий", "произведение событий", "противоположное событие", "несовместные события", "независимые события", "условная вероятность"… И, кстати, Вы студент или школьник?


Это был мой следующий вопрос: как доказать независимость событий, чтобы их спокойно перемножать без учета зависимости. Я студент, первый месяц комбинаторики.
Знаю 3 эквивалентных определения попарной независимости, но подсчет попарных условных вероятностей меня немного пугает, ведь я не знаю количества вариантов "m(A1A2)" (для первой тройки и второй тройки, например). Нужно уточнить формулировку самих событий.
A1: "Вероятность того, что в первой тройке мы возьмем не взятые раньше шары"
A2: "Вероятность того, что во второй тройке мы возьмем не взятые раньше шары" и т.д.
Тогда A1A2 будет: "Вероятность того, что ни в первой, ни во второй не будут взятые шары", и по логике это аналогично вычислению P(A2), что будет подходить под определение независимости:
P(A2)=P(A2/A1) (A2 при условии A1)

Это справедливо?

 
 
 
 Re: Вероятность использования всех шаров за 4 игры
Сообщение07.02.2018, 23:43 
Аватара пользователя
Andrei333 в сообщении #1290976 писал(а):
Нужно уточнить формулировку самих событий.
A1: "Вероятность того, что в первой тройке мы возьмем не взятые раньше шары"
A2: "Вероятность того, что во второй тройке мы возьмем не взятые раньше шары" и т.д.
Неправильно. В ваших формулировках перепутаны события и вероятности. Определение события не может содержать слова "вероятность". Я люблю писать так:
$$A_1=\{\text{в первой тройке выбраны не взятые раньше шары}\},$$ $$A_2=\{\text{во второй тройке выбраны не взятые ранее шары}\}$$ и т.д.
Разумеется, у Вас могут быть другие способы записи, но засовывать слово "вероятность" в определение события не надо.

Andrei333 в сообщении #1290976 писал(а):
Тогда A1A2 будет: "Вероятность того, что ни в первой, ни во второй не будут взятые шары"
Верно. Естественно, если убрать упоминание вероятности.

Andrei333 в сообщении #1290976 писал(а):
и по логике это аналогично вычислению P(A2), что будет подходить под определение независимости:
P(A2)=P(A2/A1) (A2 при условии A1)
Здесь просто есть такая теорема: если вероятность одного из событий $A$ или $B$ равна $0$ или $1$, то $A$ и $B$ независимы. А у Вас $\mathbf P(A_1)=1$.
Замечание: не забывайте писать знаки доллара вокруг всех формул, даже односимвольных. Иначе тема запросто может попасть в Карантин.

Andrei333 в сообщении #1290976 писал(а):
Это был мой следующий вопрос: как доказать независимость событий, чтобы их спокойно перемножать без учета зависимости.
А они здесь не являются независимыми. Но есть же формула для вероятности произведения зависимых событий.

Andrei333 в сообщении #1290976 писал(а):
Знаю 3 эквивалентных определения попарной независимости, но подсчет попарных условных вероятностей меня немного пугает, ведь я не знаю количества вариантов "m(A1A2)" (для первой тройки и второй тройки, например).
Странно. Вы же явно вычисляете условные вероятности $\mathbf P(A_2|A_1)$, $\mathbf P(A_3|A_1A_2)$ и $\mathbf P(A_4|A_1A_2A_3)$.
Условная вероятность $\mathbf P(A|B)=\frac{\mathbf P(AB)}{\mathbf P(B)}$ интерпретируется как "вероятность события $A$, вычисленная в предположении, что событие $B$ произошло". А Вы так и считаете: вероятность $A_2$ при условии, что $A_1$ произошло; вероятность $A_3$ при условии, что $A_1$ и $A_2$ произошли; вероятность $A_4$ при условии, что $A_1$, $A_2$ и $A_3$ произошли.

 
 
 
 Re: Вероятность использования всех шаров за 4 игры
Сообщение08.02.2018, 01:04 
Someone в сообщении #1290985 писал(а):
Разумеется, у Вас могут быть другие способы записи, но засовывать слово "вероятность" в определение события не надо.
Да, конечно, отвечал в спешке, прошу прощения.

Someone в сообщении #1290985 писал(а):
Здесь просто есть такая теорема: если вероятность одного из событий $A$ или $B$ равна $0$ или $1$, то $A$ и $B$ независимы. А у Вас $\mathbf P(A_1)=1$.
Замечание: не забывайте писать знаки доллара вокруг всех формул, даже односимвольных. Иначе тема запросто может попасть в Карантин.
А вот такой теоремы нам не давали, спасибо. Как и за замечание про формулы.

Someone в сообщении #1290985 писал(а):
Странно. Вы же явно вычисляете условные вероятности $\mathbf P(A_2|A_1)$, $\mathbf P(A_3|A_1A_2)$ и $\mathbf P(A_4|A_1A_2A_3)$.
Условная вероятность $\mathbf P(A|B)=\frac{\mathbf P(AB)}{\mathbf P(B)}$ интерпретируется как "вероятность события $A$, вычисленная в предположении, что событие $B$ произошло". А Вы так и считаете: вероятность $A_2$ при условии, что $A_1$ произошло; вероятность $A_3$ при условии, что $A_1$ и $A_2$ произошли; вероятность $A_4$ при условии, что $A_1$, $A_2$ и $A_3$ произошли.
Да, все так, верно. Кхм, я по своей глупости пытался привязать этот факт к равенству $P(A1)=P(A2|A1)$.
Таким образом, я все-таки могу справедливо перемножать полученные условные вероятности, или мне необходимо по определению $P(AB)=P(A)*P(B|A)$ умножить еще на $P(Ai) для всех четырех вероятностей (и если это так, то как их вычислить...)?

 
 
 
 Re: Вероятность использования всех шаров за 4 игры
Сообщение08.02.2018, 01:35 
Аватара пользователя
Andrei333 в сообщении #1291013 писал(а):
умножить еще на $P(Ai)$ для всех четырех вероятностей
Что-то странное пишете. Будьте аккуратнее. Формула вероятности произведения для зависимых событий выглядит так: $$\mathbf P(A_1A_2A_3\ldots A_{n-1}A_n)=\mathbf P(A_1)\mathbf P(A_2|A_1)\mathbf P(A_3|A_1A_2)\ldots\mathbf P(A_n|A_1A_2A_3\ldots A_{n-1}).$$
Andrei333 в сообщении #1291013 писал(а):
как их вычислить...
Вы невнимательно читаете то, что я Вам пишу. Эти вероятности Вы уже вычислили, и Yadryara их совершенно справедливо одобрил. В прошлом сообщении я Вам это уже сказал.

Andrei333 в сообщении #1291013 писал(а):
А вот такой теоремы нам не давали, спасибо.
Не за что. Она, на мой взгляд, малополезная (и совершенно элементарная). Просто имейте её в виду.

Andrei333 в сообщении #1291013 писал(а):
спасибо. Как и за замечание про формулы.
Однако за знаками доллара проследили плохо, и в последней формуле одного знака доллара не хватает. В результате у меня были проблемы с цитированием.
Вообще, почитайте для начала тему https://dxdy.ru/topic8355.html, а потом https://dxdy.ru/topic183.html.
Если хотите посмотреть код формулы в каком-нибудь сообщении, наведите на неё курсор мыши.

 
 
 [ Сообщений: 22 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group