2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 Простое решение уравнения ВТФ
Сообщение03.02.2018, 09:40 
Предположим, что уравнение
$a^3+b^3=c^3$ (1)
где a,b,c взаимно простые,имеет натуральные решения.
Ур (1) представим в виде
$c^3-a^3=p(c-a)$ (2)
где$p=c^2+ac+a^2$
тогда
$pc-c^3=pa-a^3=ac(c+a), pc+a^3=pa+c^3=(c+a)(c^2+a^2)$ (3)
$(c-a)(pc+a^3)=c^4-a^4$ (4)
$(pc+a^3)(c^3-a^3)=p(c^4-a^4)$ (5)
составим пропорцию
$\frac{pc+a^3}{c^4-a^4}$=$\frac{p}{c^3-a^3}$(6)
или
$\frac{pc+a^3}{c^4-a^4}$=$\frac{pc}{c^4-a^3c}$ (7)
по правилам пропорции
1) знаменатель вычтем из числителя
$\frac{(pc-c^4)+a^3+a^4}{c^4-a^4}$=$\frac{(pc-c^4)+a^3c}{c^4-a^3c}$ (8)
2)правую часть вычтем из левой
$\frac{a^3+a^4-a^3c}{a^3c-a^4}$=$\frac{(pc-c^4)+a^3c}{c^4-a^3c}$ (9)
так как a#0,c#0,сократим левую часть на$a^3$, правую на $c$
получим
$\frac{1+a-c}{c-a}$=$\frac{pc-c^3+a^3}{c^3-a^3}$=$\frac{pa}{c^3-a^3}$ (10)
или
$pa(c-a)=p(c-a)(1+a-c)$ (11)
разложим на множители (11)
$p(c-a)(a-1-a+c)=0$ (12)
решаем три уравнения
$p=0, c^2+ac=-a^2$ (13)
$c-a=0, c=a$
$c-1=0, c=1$
нет решений, удовлетворяющих условию. следовательно, предположение неверно.

 
 
 
 Re: Простое решение уравнения ВТФ
Сообщение03.02.2018, 13:47 
Вы в своем решении никак не используете b. Вы доказали, что $c^3-a^3\ne (c^2+ac+a^2)(c-a)$.

 
 
 
 Re: Простое решение уравнения ВТФ
Сообщение03.02.2018, 14:10 
Аватара пользователя
arguments в сообщении #1289655 писал(а):
получим
$\frac{1+a-c}{c-a}$=$\frac{pc-c^3+a^3}{c^3-a^3}$=$\frac{pa}{c^3-a^3}$ (10)
arguments
Ну ведь совершенно нечитабельно. Неужели трудно написать так:
Код:
$\displaystyle \frac{1+a-c}{c-a}=\frac{pc-c^3+a^3}{c^3-a^3}=\frac{pa}{c^3-a^3}$

$\displaystyle \frac{1+a-c}{c-a}=\frac{pc-c^3+a^3}{c^3-a^3}=\frac{pa}{c^3-a^3}$ (10)

И глазу приятней, и к людям уважение.

 
 
 
 Re: Простое решение уравнения ВТФ
Сообщение03.02.2018, 14:34 
Gagarin1968
Замечание справедливо. Я учту. Но это не из-за неуважения, а отсутствия опыта.

 
 
 
 Re: Простое решение уравнения ВТФ
Сообщение03.02.2018, 15:32 
Аватара пользователя
arguments в сообщении #1289655 писал(а):
$\frac{(pc-c^4)+a^3+a^4}{c^4-a^4}$=$\frac{(pc-c^4)+a^3c}{c^4-a^3c}$ (8)

arguments
У Вас (8) - неравенство (потому что $c>a+1$). Это связано как-то с тем, что $a,b,c,p$ только натуральные?

 
 
 
 Re: Простое решение уравнения ВТФ
Сообщение03.02.2018, 15:38 
kotenok gav
В моем решении показано, что
$c^3-a^3=b^3=p(c-a)$
с и а не удовлетворяют условию задачи.

-- 03.02.2018, 16:50 --

vxv
Ну, конечно. В этом и состоит противоречие.

 
 
 
 Re: Простое решение уравнения ВТФ
Сообщение03.02.2018, 15:51 
Какому?

 
 
 
 Re: Простое решение уравнения ВТФ
Сообщение03.02.2018, 16:18 
Аватара пользователя
vxv в сообщении #1289730 писал(а):
arguments
У Вас (8) - неравенство (потому что $c>a+1$). Это связано как-то с тем, что $a,b,c,p$ только натуральные?

arguments в сообщении #1289738 писал(а):
Ну, конечно. В этом и состоит противоречие.

То есть (по-вашему) (8) всегда равенство, когда в (1) $a,b$ натуральные, а $c$ - нет? 8-)
Или (8) тоже и в таком случае всегда неравенство (если так, то доказательства ТФ нет)?

 
 
 
 Re: Простое решение уравнения ВТФ
Сообщение03.02.2018, 17:11 
Решить уравнение-это значит найти все его решения, или доказать,что решения не существуют. Последнее я доказываю методом от противного. Прошу это учесть своим аппонентам

 
 
 
 Re: Простое решение уравнения ВТФ
Сообщение03.02.2018, 19:05 
Аватара пользователя
arguments в сообщении #1289655 писал(а):
сократим левую часть на$a^3$, правую на $c$
получим
$\frac{1+a-c}{c-a}$=$\frac{pc-c^3+a^3}{c^3-a^3}$=$\frac{pa}{c^3-a^3}$ (10)

$c$ в (10) немного не досократилось...

 
 
 
 Re: Простое решение уравнения ВТФ
Сообщение03.02.2018, 21:09 
Прекрасно все сократилось,если учесть. что $pc-c^3=pa-a^3$

 
 
 
 Re: Простое решение уравнения ВТФ
Сообщение03.02.2018, 21:49 
Аватара пользователя
arguments в сообщении #1289655 писал(а):
$\frac{a^3+a^4-a^3c}{a^3c-a^4}$=$\frac{(pc-c^4)+a^3c}{c^4-a^3c}$ (9)
так как a#0,c#0,сократим левую часть на$a^3$, правую на $c$
получим
$\frac{1+a-c}{c-a}$=$\frac{pc-c^3+a^3}{c^3-a^3}$=$\frac{pa}{c^3-a^3}$ (10)

Должно быть в числителе (10) после сокращения на $c$ (9):
$p-c^3+a^3$,
а у Вас:
$pc-c^3+a^3$

 
 
 
 Re: Простое решение уравнения ВТФ
Сообщение04.02.2018, 09:45 
Да,показалось,а получилось тождество.

 
 
 
 Re: Простое решение уравнения ВТФ
Сообщение04.02.2018, 10:51 
Аватара пользователя
arguments в сообщении #1289655 писал(а):
Предположим, что уравнение
$a^3+b^3=c^3$ (1)
где a,b,c взаимно простые,имеет натуральные решения.
Ур (1) представим в виде
$c^3-a^3=p(c-a)$ (2)
где$p=c^2+ac+a^2$
тогда
$pc-c^3=pa-a^3=ac(c+a), pc+a^3=pa+c^3=(c+a)(c^2+a^2)$ (3)
$(c-a)(pc+a^3)=c^4-a^4$ (4)
$(pc+a^3)(c^3-a^3)=p(c^4-a^4)$ (5)
составим пропорцию
$\frac{pc+a^3}{c^4-a^4}$=$\frac{p}{c^3-a^3}$(6)
или
$\frac{pc+a^3}{c^4-a^4}$=$\frac{pc}{c^4-a^3c}$ (7)
по правилам пропорции
1) знаменатель вычтем из числителя
$\frac{(pc-c^4)+a^3+a^4}{c^4-a^4}$=$\frac{(pc-c^4)+a^3c}{c^4-a^3c}$ (8)

vxv в сообщении #1289730 писал(а):
У Вас (8) - неравенство (потому что $c>a+1$).

arguments в сообщении #1289738 писал(а):
Ну, конечно. В этом и состоит противоречие.

arguments. Где ошибка?

 
 
 
 Re: Простое решение уравнения ВТФ
Сообщение06.02.2018, 15:14 
Так может на (8) и стоит остановиться.
Цитата:
vxv в сообщении #1290016 писал(а):
У Вас (8) - неравенство (потому что $c>a+1$).


В принципе это уже доказательство, если ,конечно,нет ошибки. вроде нет

 
 
 [ Сообщений: 37 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group