Я как будто понял, каким образом задача может быть решена в рамках школьной математики.
Пусть начальная масса поршня была 

; затем, вместе с поставленным грузом, она становится равной 

, где 

 - заданное число. Груз аккуратно ставится на поршень – и тут же отпускается, так что далее  движение поршня с грузом происходит свободно.
Возникают колебания. Несмотря на идеальную теплоизоляцию, через достаточно продолжительное время эти колебания не сохранят свой первоначальный вид. Дело в том, что в термодинамической системе (груз и поршень+газ) движение поршня есть всего лишь одна из 

 степеней свободы, где 

 - число атомов газа. Когда система наконец придёт в термодинамическое равновесие, на эту степень свободы, так же как и на любую другую, останется энергия   

 , то есть она практически исчезнет.
Таким образом, вся энергия первоначальных колебаний перейдёт в тепловую энергию газа. Он нагреется. Отсюда, в частности, становится ясно, что если бы груз ставился замедленно, так, чтобы избежать колебаний поршня – то, поскольку энергия системы была бы меньшей, газ имел бы более низкую равновесную температуру, а следовательно, положение равновесия поршня было бы ниже. 
Возвращаемся к первому варианту. Допустим, первоначальная высота нижней грани поршня была равна 

, а установившаяся равновесная 

 . Запишем уравнение энергетического баланса

 где 

 - начальный объём газа. Очевидно, что

 где 

 следует определить. Так как 

, то после подстановки получаем

 Всё бы ничего, но озадачивает то, что при как угодно большом 

, то есть большом грузе - получается, что конечный объём почему-то будет составлять не меньше 2/5 от начального значения. Я этого не могу объяснить.