Но... там огромный мир, там много красоты и хочется посмотреть как можно больше. Вывод: нужно поскорей двигаться вперед. Не сломя голову, чтобы на красоты посмотреть, но и не отвлекаясь детали, без которых можно обойтись.
Определитесь - Вы хотите знать математику или почитать
о математике. Если первое, то в первую очередь необходимо усвоить материал, не "плавать" в нем. А уж когда это сделано - любоваться красотами. Вот Зорич - это про красоты, а материал по нему осваивать трудно.
Все что я смогу спросить - это правильно ли то, что я написал.
Ну и спросите. Это, в общем, и есть самый приятный тип вопроса - когда человек разбирается и хочет только убедиться, что разбирается.
Да и тем таких уже много.
Раз много - почитайте их. Если после этого Ваши сомнения рассеются, тем лучше.
Кто-то даже писал, что, мол, вопросы про дифференциал уже оскомину набили.
Это личная проблема того, кому они ее набили. ПРР на то и ПРР, что здесь вопросы по учебному материалу.
Когда я говорил о непонимании, то имел в виду непонимание в широком смысле. Это как с доказательством формулы по индукции: откуда она взялась - непонятно, да, ей можно пользоваться, но понимания нет.
Мне знакомо это ощущение. Я бы описал его так. Представим себе человека, который никогда не играл в шахматы. Ему дали список правил и поручили следить за партией. Он сможет констатировать, что – да, каждый ход сделан по правилам, и – да, это мат. Он видит, что поставлен мат, но не понимает,
почему он поставлен. «Потому что король ходит так, а ферзь этак» – не ответ. Правила, регулирующие возможные и невозможные ходы – это еще не шахматы. Игрок проиграл, потому что не развивал фигур / упустил центр / не берег пешек и так далее. В шахматах есть свои законы, свои причинно-следственные связи. А наш наивный наблюдатель не знает их, не понимает, как здесь все устроено.
Именно это я сам чувствую в некоторых вопросах даже того же матана. Почему инвариантна форма только первого дифференциала, а не второго и так далее? Почему для дифференцируемости функции двух переменных недостаточно существования частных производных, а требуется еще их непрерывность? Я могу проследить доказательства доказанного и опровержения опровергнутого. Что там могу – я давно сделал это. Я согласен, что ходы сделаны по правилам. Но черт, я – не – понимаю – что – происходит!
Трудность в том, что "понимаю" - это ощущение, как добиться ощущения - вопрос неформализуемый. Я придумал следующие рецепты:
1. Выяснить геометрический/физический смысл. Например, я долго не понимал, что такое определитель. Выяснилось, что определитель - это (снабженный знаком) объем параллелепипеда, натянутого на вектора, координаты которых заданы матрицей (UPD: в
, а то меня тут ниже пинают). Выяснять можно из учебников или задавая вопросы.
2. Просто попросить мотивировать определение. Откуда оно такое взялось и почему именно такое? Я так
делал с определением размерности в общей топологии. Понял, не жалуюсь.
3. Конкретизировать свои вопросы. Допустим у меня нет ощущения, что я до конца понимаю, что такое производная. Придумаем конкретный вопрос про производную, ответа на который я не знаю. Для начала -
правда ли, что производную можно заменить пределом средней скорости? Оказалось, что можно, если у функции нет устранимого разрыва. Что еще мне непонятно? Ну, допустим, кое-что про бесконечную производную (этот вопрос я не буду формулировать здесь, задам в соответствующей теме в свое время). Чем больше таких вопросов (главное - математически точных, на уровне "доказать или опровергнуть"), тем лучше. Глядишь, со всех сторон понятие обсосешь, ощущение понимания и появится.
4. Порешать задачи на доказательство. Обычно, когда чего-то не понимаешь, но не можешь выразить, чего именно, это непонимание выливается в конкретные затруднения при доказательствах. И тогда в ПРР можно задать вопрос "как доказать, что", слушать, что тебе подсказывают, и пошагово разбираться. Помогает.
5. Забить. Если не помогло ничего из вышеперечисленного, не исключено, что голову просто глючит, и никакого мистического "понимания", кроме того, которым ты уже обладаешь, не существует. В конце концов, математика - штука для человека новая в эволюционном масштабе времени, и никто не сказал, что все математические понятия должны быть для нашего разума так же легки и естественны, как "если уронить банан, он упадет". С другой стороны, и в самых естественных вещах можно при определенном настрое пытаться найти "скрытый смысл". Трудно ответить на вопрос, почему
иначе, чем "по определению". Некоторые личности с философским складом ума всю жизнь медитируют на формулу
, но это не значит, что стоит уподобляться. Так можно всю жизнь гоняться за призраком.