2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5 ... 8  След.
 
 Re: О доказательствах в геометрии...
Сообщение11.01.2017, 19:59 
Аватара пользователя
LionKing в сообщении #1183708 писал(а):
Длина отрезка - вещественное число или рациональное?
Вы бы еще предположили, что оно трансфинитное. Вещественное, конечно, иначе как нам быть с прямоугольными треугольниками? Вас смущает, что явно не указано, что оно вещественное? Ну, это подразумевается по умолчанию, когда произносится слово "число".
LionKing в сообщении #1183708 писал(а):
Одно с другим связано.
LionKing в сообщении #1183710 писал(а):
Фигура? А что это?)
Часть используемых в аксиомах понятий всегда приходится оставлять без определений. Или принимать аксиомы за их определения. Типа "точка, прямая и плоскость в евклидовой геометрии - это нечто, подчиняющееся следующим аксиомам".

 
 
 
 Re: О доказательствах в геометрии...
Сообщение11.01.2017, 20:01 
Аватара пользователя
LionKing в сообщении #1183708 писал(а):
Длина отрезка - вещественное число или рациональное? (существенный момент)

Это определяется не курсом геометрии, а другими параллельными потоками математики. По мере того, как там проходят сначала рациональные числа, а потом вещественные, можно "апгрейдить" и понятие длины отрезка.

В профильном курсе алгебры можно доказать иррациональность $\sqrt{2},$ но вряд ли это доказательство органично впишется в школьный курс геометрии. Обычно об иррациональности $\sqrt{2}$ и $\pi$ сообщается без доказательства, и я не знаю ни одной школьной задачи, требующей опираться на эти факты.

LionKing в сообщении #1183708 писал(а):
Одно с другим связано.

Понятное дело, но вы декларировали дыры именно в аксиоматике.

Определения в школе, конечно, далеки от вузовского уровня. Однако требовать от школьников знания тонкостей определений нелепо. И не об этом речь в этой теме. Частью инструментария школьники могут пользоваться "извне", введённой вне предмета геометрии: понятиями числа, отображения, логическими операциями, операциями на множествах.

 
 
 
 Re: О доказательствах в геометрии...
Сообщение11.01.2017, 20:02 
Аватара пользователя

(Оффтоп)

sergei1961 в сообщении #1183364 писал(а):
учебники столетней давности в сто раз и лучше.

Metford в сообщении #1183709 писал(а):
Лучше для чего?

Ну как же для чего? А поностальгировать? Дескать, учебники были в сто раз лучше и девочки были в сто раз того...

 
 
 
 Re: О доказательствах в геометрии...
Сообщение11.01.2017, 20:15 
Аватара пользователя
В Киселёве (переиздание 2004 года) изложены аксиомы Гильберта.

 
 
 
 Re: О доказательствах в геометрии...
Сообщение11.01.2017, 20:19 
Munin в сообщении #1183712 писал(а):
Понятное дело, но вы декларировали дыры именно в аксиоматике

Это и были дыры в аксиоматике. Ну сами посудите. Вот есть у нас тип: "фигура". Объект может обладать или не обладать этим типом, например: объект 1, объект 2: фигура
Для того, чтобы аксиомы работали работали, нам нужно "привязать" его к уже существующим. Иначе как мы поймем, что треугольник - фигура, что трапеция - фигура?
Мы можем сказать, что если объект 1 - треугольник/трапеция, то объект 1 - фигура. А как быть с остальными многоугольниками с учетом того, что выше обозначенные аксиоматики построены "без участия" ТМ-ов. Мы можем определить тип "многоугольник". Но как? Нужно нумеровать точки, и вот мы уже пришли к необходимости подключать натуральные числа со своей аксиоматикой.) Плюс ко всему, нумерация - это соответствие, которое нужно как-то втиснуть в безТМ-ную теорию.))) Как-то так...

 
 
 
 Re: О доказательствах в геометрии...
Сообщение11.01.2017, 20:21 
Munin в сообщении #1183704 писал(а):
Аксиомы, приведённые в Погорелове (изд. 1993, 4-е):
Тут всё плохо. Можно взять издание пораньше -- там хорошо.
Конкретно, например, ничего не понятно с полупрямыми и полуплоскостями. Тут же нет описания способа того, как прямая разбивается на два луча.

 
 
 
 Re: О доказательствах в геометрии...
Сообщение11.01.2017, 20:26 
Прошу меня извинить, но есть необходимость прервать дискуссию в силу наличия дел.) Тема интересная, но увы... Если кого нечаянно задел или обидел - извиняюсь.)))

 
 
 
 Re: О доказательствах в геометрии...
Сообщение11.01.2017, 20:27 
LionKing в сообщении #1183698 писал(а):
Но в теории используются "не заявленные" конструкции:
1) Бесконечная последовательность точек. Что это?
2) Совокупность точек. Что это? (См. определение луча, полуплоскости)
Надо смотреть на тот вариант, которым Гильберт пользовался в изысканиях насчёт элементарной геометрии как теории. Может, там всё более строго.

 
 
 
 Re: О доказательствах в геометрии...
Сообщение11.01.2017, 20:29 
arseniiv в сообщении #1183721 писал(а):
LionKing в сообщении #1183698 писал(а):
Но в теории используются "не заявленные" конструкции:
1) Бесконечная последовательность точек. Что это?
2) Совокупность точек. Что это? (См. определение луча, полуплоскости)
Надо смотреть на тот вариант, которым Гильберт пользовался в изысканиях насчёт элементарной геометрии как теории. Может, там всё более строго.

С радостью посмотрю? А где, не подскажите, пожалуйста?

 
 
 
 Re: О доказательствах в геометрии...
Сообщение11.01.2017, 20:32 
Аватара пользователя
LionKing
Насколько я могу судить, "фигура" в Атанасяне - это приблизительно то же, что множество точек.

Ваши придирки были бы по делу, если бы в школе и на школьных олимпиадах были бы задачи, которые опирались бы на указанные вами нюансы. Однако их нет.

-- 11.01.2017 20:38:55 --

Nemiroff в сообщении #1183718 писал(а):
Тут всё плохо. Можно взять издание пораньше -- там хорошо.

У вас есть - приведите.

Nemiroff в сообщении #1183718 писал(а):
Конкретно, например, ничего не понятно с полупрямыми и полуплоскостями. Тут же нет описания способа того, как прямая разбивается на два луча.

Что именно вам непонятно? И напомню, вопрос о дырах не в определениях, а в аксиомах.

Хотя бы потому, что цитировать все определения из учебника - многовато получится.

 
 
 
 Re: О доказательствах в геометрии...
Сообщение11.01.2017, 20:40 
LionKing в сообщении #1183724 писал(а):
С радостью посмотрю? А где, не подскажите, пожалуйста?
Не знаю, к сожалению. Я только слышал про то, зачем Гильберту вообще понадобилось придумывать аксиоматику.

Munin в сообщении #1183712 писал(а):
По мере того, как там проходят сначала рациональные числа, а потом вещественные, можно "апгрейдить" и понятие длины отрезка.
Тут дело в том, что тогда это не получается теория первого порядка, потому что не добавлены аксиомы вещественных чисел, а если мы их даже добавим, у нас получится не та геометрия, про которую Гильберт доказал полноту, потому что у первопорядковой теории вещественных чисел есть нестандартные модели.

Anton_Peplov в сообщении #1183711 писал(а):
Часть используемых в аксиомах понятий всегда приходится оставлять без определений. Или принимать аксиомы за их определения. Типа "точка, прямая и плоскость в евклидовой геометрии - это нечто, подчиняющееся следующим аксиомам".
Но если фигура используется только в той одной аксиоме, этого будет недостаточно, чтобы понять её взаимоотношения со всем остальным.

Вообще тут надо аккуратно разобрать, о каких теориях мы тут говорим и о каких не говорим, и чего мы от них хотим.

 
 
 
 Re: О доказательствах в геометрии...
Сообщение11.01.2017, 20:47 
Аватара пользователя
arseniiv в сообщении #1183730 писал(а):
Тут дело в том, что тогда это не получается теория первого порядка, потому что не добавлены аксиомы вещественных чисел, а если мы их даже добавим, у нас получится не та геометрия, про которую Гильберт доказал полноту, потому что у первопорядковой теории вещественных чисел есть нестандартные модели.

Опять вопрос: на эти все тонкости есть школьные задачи??? Или вы всё-таки не понимаете, о чём тема?

 
 
 
 Re: О доказательствах в геометрии...
Сообщение11.01.2017, 20:51 
Ну, кусок темы можно отделить, притом начиная с совершенно ясно какого поста.

-- Ср янв 11, 2017 22:52:10 --

Хотя обсуждать это мне тоже не особо хочется — для полезных и верных ответов надо закапываться в литературу, ещё не сразу ясно какую.

 
 
 
 Re: О доказательствах в геометрии...
Сообщение11.01.2017, 20:55 
Munin в сообщении #1183726 писал(а):
Что именно вам непонятно? И напомню, вопрос о дырах не в определениях, а в аксиомах.
Ну хотелось бы уметь решать такое: вот отрезок, его оба конца принадлежат одной полупрямой. Верно ли, что весь отрезок принадлежит одной полупрямой?
Munin в сообщении #1183726 писал(а):
И напомню, вопрос о дырах не в определениях, а в аксиомах.
Вы когда это говорите, вы что имеете в виду? Допустим, аксиоматика такая, что определение корректно ввести не получается. При этом его вводят как получится. Это дыра в определении или в аксиоматике?
Вон у Погорелова написано: полупрямая это часть прямой, которая состоит из всех точек, лежащих по одну сторону от данной точки. "Лежать по одну сторону" --- это как?

 
 
 
 Re: О доказательствах в геометрии...
Сообщение11.01.2017, 21:09 
Аватара пользователя
Nemiroff
Повторяю вопрос: приведите цитаты из более раннего издания.

Nemiroff в сообщении #1183740 писал(а):
"Лежать по одну сторону" --- это как?

    Цитата:
    Точка $B$ лежит между точками $A$ и $C,$ она разделяет точки $A$ и $C.$ Можно также сказать, что точки $A$ и $C$ лежат по разные стороны от точки $B.$ Точки $B$ и $C$ лежат по одну сторону от точки $A,$ они не разделяются точкой $A.$ Точки $A$ и $B$ лежат по одну сторону от точки $C.$
    Отрезком называется часть прямой, которая состоит из всех точек этой прямой, лежащих между двумя данными ее точками. Эти точки называются концами отрезка.

 
 
 [ Сообщений: 109 ]  На страницу Пред.  1, 2, 3, 4, 5 ... 8  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group