То, что простые числа ведут себя в некотором смысле "случайно", не вызывает ни у кого никаких сомнений. Но, похоже, на твердую основу эти соображения поставить не удалось.
Я рассматривал три вероятностные модели распределения простых чисел.
В первой вероятностной модели предполагается, что наугад из корзины, содержащей шары с натуральными номерами от 1 до
, выбирается шар. Если номер шара является простым числом, то случайной величине присваивается значение 1, если нет, то 0. В данной вероятностной модели шар, после того, как его выбрали, снова возвращается в корзину. Поэтому в этой модели существует вероятность выбрать один и тот же шар несколько раз. В реальной ситуации, когда подсчитывается количество простых чисел на интервале натурального ряда от 1 до
, такой ситуации не бывает.
Вторая вероятностная модель не имеет такого недостатка - с выбором шара без возврата. При таком выборе мы получаем не биномиальное распределение суммы случайных величин, как в первой вероятностной модели, а - гипергеометрическое распределение.
При больших значениях
первая вероятностная модель дает почти такой же результат, что и рассмотренная вероятностная модель без возврата, которая не имеет указанного недостатка первой вероятностной модели.
В качестве третьей вероятностной модели я рассмотрел модель Крамера.
Сравнение показателей этих трех вероятностных моделей с Гипотезой Римана дало интересные результаты. Все три модели дают практически одинаковые отклонения количества простых чисел, не превышаюших
от
значительно меньше, чем по Гипотезе Римана.