2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Почти всюду
Сообщение26.10.2016, 17:43 
В википедии прочёл про понятие почти всюду:
Об утверждении, зависящем от точки пространства с мерой, говорят, что оно выполнено почти всюду, если множество точек, для которых оно не выполнено, имеет меру ноль.
Хотелось бы узнать что такое мера ноль?

 
 
 
 Re: Почти всюду
Сообщение26.10.2016, 17:49 
Вам необходимо прочитать про меру.
Потом про нуль.
Потом совокупить полученные сведения.

 
 
 
 Re: Почти всюду
Сообщение26.10.2016, 18:02 
iifat в сообщении #1163256 писал(а):
Вам необходимо прочитать про меру.

Это только если речь действительно о "пространстве с мерой" вообще. А если о мере Лебега -- то она как таковая не нужна: понятие внешней меры элементарно.

kotenok gav в сообщении #1163254 писал(а):
Хотелось бы узнать что такое мера ноль?

Это мера, равная нулю. Для обычной меры в $\mathbb R^n$ это означает, что множество можно покрыть конечным или бесконечным, но счётным набором параллелепипедов сколь угодно малого суммарного объёма.

 
 
 
 Re: Почти всюду
Сообщение26.10.2016, 18:12 
ewert в сообщении #1163259 писал(а):
Для обычной меры в $\mathbb R^n$ это означает, что множество можно покрыть конечным или бесконечным, но счётным набором параллелепипедов сколь угодно малого суммарного объёма.

Спасибо!!

 
 
 
 Re: Почти всюду
Сообщение26.10.2016, 19:09 
Аватара пользователя
kotenok gav в сообщении #1163254 писал(а):
Хотелось бы узнать что такое мера ноль?

Мера - это обобщение понятия длины, площади, объёма.
Множество меры нуль - это, грубо говоря, маленькое множество, имеющее нулевую длину/площадь/объём (в зависимости от того, рассматривается ли множество на прямой / на плоскости / в трёхмерном пространстве).
Неудивительно, что такое множество можно покрыть системой промежутков/прямоугольников/параллелепипедов сколь угодно малой суммарной длины/площади/объёма, как указал ewert.
Примером множества меры нуль на прямой является множество рациональных чисел: как известно, рациональных чисел - "исчезающе малое количество" (грубо говоря) по сравнению с иррациональными.
Примером множества меры нуль на плоскости является любая прямая или кривая (имеется в виду, любая "нормальная" кривая, а не экзотическая вроде кривой Пеано). Потому что любая линия на плоскости имеет нулевую площадь.

 
 
 
 Re: Почти всюду
Сообщение27.10.2016, 05:27 
Спасибо!!!

 
 
 [ Сообщений: 6 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group