Условие: Средний рост 3000 студентов ПТУ распределен нормально со средним 175см и стандартным отклонением

. Если выбрать 80 выборок по 25 студентов в каждой, какими будут среднее и стандартное отклонение средних, если выборки делаются а) с возвращением; б) без возвращения?
Без возвращения называется отбор, при котором попавшая в выборку единица не возвращается в исходную совокупность и в дальнейшем выборе не участвует; при этом численность единиц генеральной совокупности N сокращается в процессе отбора. При повторном отборе попавшая в выборку единица после регистрации возвращается в генеральную совокупность и таким образом сохраняет равную возможность наряду с другими единицами быть использованной в дальнейшей процедуре отбора; при этом численность единиц генеральной совокупности N остается неизменной.
Среднее выборки

вычисляется как

. Средняя ошибка выборки = стандартная ошибка среднего есть величина

, выражающая среднее квадратическое отклонение выборочной средней от математического ожидания.

- объем выборки.
А) Из центральной предельной теоремы следует что выборочные средние распределились бы вокруг 175 (среднее) со стандартным отклонением (оно же стандартная ошибка среднего):

, где

- число наблюдений в выборках

.
Б) В этом случае предыдущую формулу стандартного отклонения справедлива и в этом случае, т.к. каждая выборка содержит не более

элементов всей генеральной совокупности.
Правильно ли я рассуждаю? Смущает что я не понимаю как учитывается число выборок (80).