2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5 ... 16  След.
 
 Задача от Дж.Литлвуда. "Парадокс бесконечности"
Сообщение23.04.2008, 10:42 
Аватара пользователя
Шары, занумерованные числами 1,2,... кладутся в безразмерный ящик следующим образом.
За одну минуту до полудня кладутся шары от 1 до 10, и шар 1 вынимается обратно.
За 1/2 минуты до полудня кладутся шары от 11 до 20, и шар 2 вынимаетсяобратно.
За 1/3 минуты до полудня кладутся шары от 21 до 30, и шар 3 вынимается обратно.
И т.д.
Сколько шаров останется в ящике в полдень?

 
 
 
 Re: Задача от Дж.Литлвуда. "Парадокс бесконечности"
Сообщение23.04.2008, 11:59 
Аватара пользователя
Коровьев писал(а):
Сколько шаров останется в ящике в полдень?

$$\lim_{n \rightarrow \infty}(10n-n+1)$$

 
 
 
 
Сообщение23.04.2008, 12:09 
Аватара пользователя
Борода!

 
 
 
 
Сообщение23.04.2008, 13:18 
Толя поспорил с Колей, что съест 5 баночек гуталина, а съел только 3. Сколько баночек гуталина не смог осилить Толя?

 
 
 
 
Сообщение23.04.2008, 14:58 
В ящике не останется шаров.
P.S. А манипуляции с пределами в данном случае не дадут результата.

 
 
 
 
Сообщение23.04.2008, 15:43 
Аватара пользователя
Коровьев писал(а):
Сколько шаров останется в ящике в полдень?


А полдень вообще наступит? :roll:

 
 
 
 
Сообщение23.04.2008, 15:50 
Аватара пользователя
Даже "Тени исчезают в полдень", чего уж тогда говорить о каких-то там шарах в ящике? Кстати, тут Зенон с Ахиллесом недавно не пробегали ?

 
 
 
 
Сообщение23.04.2008, 16:09 
Это,кстати,известная задача . Первый вариант ответа озвучил TOTAL. Второй (который считается правильным) такой: ни одного. После первого шага не будет первого шара, после второго - второго шара и т.п. Нечто вроде того, что все умрут, а человечество при этом может жить вечно :D . Требуется уточнять понимание "сколько": только "чистое" число или его "носители" - шары (теор-множ смысл)

 
 
 
 
Сообщение23.04.2008, 17:25 
Аватара пользователя
Сдаётся мне, что это всё ж парадокс. И ответа не имеет, ибо возможен диалог:
-Не останется ни одного шара, так как какой бы номер шара ни назвали, к примеру 106, он исчезнет при 106-м шаге.
-Да, но какой бы шар не исчез при каком-то шаге, впереди у него /по номеру/ обязательно будет шар. К примеру, исчез 106 шар, но остался следующий - 107. И так будет для любого, наперёд назначенного шара.
Литлвуд придерживается первого мнения - ни одного.

 
 
 
 
Сообщение23.04.2008, 18:20 
Чем прекрасна математика, так это тем, что большинство вопросов в ней имеют вполне определенный и точный ответ и всякие мнения на них в принципе не имеют значения.
Решение задачи:
Множество шаров которые останутся в ящике в полдень является подмножеством множества всех шаров (пронумрованных натуральными числами). Но при этом для любого шара верно, что до наступления полудня он успеет оказаться в ящике и быть вынутым. Иными словами для любого шара верно, что он не будет содержаться в ящике в полдень.
Множество "полуденных" шариков пусто.

Никакого парадокса не вижу.

 
 
 
 
Сообщение23.04.2008, 18:46 
Аватара пользователя
Попов А.В. писал(а):
Чем прекрасна математика, так это тем, что большинство вопросов в ней имеют вполне определенный и точный ответ и всякие мнения на них в принципе не имеют значения.
Решение задачи:
Множество шаров которые останутся в ящике в полдень является подмножеством множества всех шаров (пронумрованных натуральными числами). Но при этом для любого шара верно, что до наступления полудня он успеет оказаться в ящике и быть вынутым. Иными словами для любого шара верно, что он не будет содержаться в ящике в полдень.
Множество "полуденных" шариков пусто.

Никакого парадокса не вижу.

Верно и то, что перед любым вынутым до полудня шаром, есть всегда шар.
Можно упростить задачку.
За секунду до полудня кладём шары 1,2 и вынимаем шар №1
За 1/2 секунды до полудня кладём шары 3,4 и вынимаем шар №2
И т. д
Будут ли в ящике в полдень шары?
Допустим, не будут.
А теперь ещё упростим. Откажемся от нумерации!
За секунду до полудня кладём 2 шара и вынимаем один шар
За 1/2 секунды до полудня кладём 2 шара и вынимаем один шар.
И т. д
Будут ли в ящике в полдень шары?
Будут.
Выходит, простой нумерацией можно изменить результат.
Это ль не парадокс?

 
 
 
 
Сообщение23.04.2008, 18:52 
Аватара пользователя
Коровьев писал(а):
А теперь ещё упростим. Откажемся от нумерации!
За секунду до полудня кладём 2 шара и вынимаем один шар
За 1/2 секунды до полудня кладём 2 шара и вынимаем один шар.
И т. д
Будут ли в ящике в полдень шары?
Будут.
Выходит, простой нумерацией можно изменить результат.
Это ль не парадокс?


Нумерация позволяет организовать процесс так, что все шары будут гарантированно удалены. Или так, что останется любое наперёд заданное множество шаров, конечное или бесконечное.
Если мы отказываемся от определённого порядка извлечения шаров, то результат становится неопределённым.

 
 
 
 
Сообщение23.04.2008, 19:17 
Аватара пользователя
Коровьев писал(а):
А теперь ещё упростим. Откажемся от нумерации!
За секунду до полудня кладём 2 шара и вынимаем один шар
За 1/2 секунды до полудня кладём 2 шара и вынимаем один шар.
И т. д
Будут ли в ящике в полдень шары?
Будут.

а докажите!!!!

 
 
 
 
Сообщение23.04.2008, 19:30 
Аватара пользователя
Понятно, что множество
$$P_1+P_2-P_1+P_3+P_4-P_2+...$$
пусто, но шары...
ИМХО.
То бишь есть математический подход и "житейский".
Отсюда, видимо, и парадокс.

Добавлено спустя 9 минут 11 секунд:

shwedka писал(а):
Коровьев писал(а):
А теперь ещё упростим. Откажемся от нумерации!
За секунду до полудня кладём 2 шара и вынимаем один шар
За 1/2 секунды до полудня кладём 2 шара и вынимаем один шар.
И т. д
Будут ли в ящике в полдень шары?
Будут.

а докажите!!!!

Доказую. Методом математической индукции.

Шары останутся.
Для первого шага это верно.
Пусть оно верно для $$n$$-го шага, после которого осталось $$m$$шаров и $$m>0$$
После $$n+1$$- шага в ящике останется $$m+1$$ шар и $$m+1>1$$.
Ч.т.д.

 
 
 
 
Сообщение23.04.2008, 19:32 
Аватара пользователя
Но ведь речь идет о событии после всех шагов, при чем здесь то, что происходит на каждом шаге? Так и до Давидюка недалеко становится :(

 
 
 [ Сообщений: 232 ]  На страницу 1, 2, 3, 4, 5 ... 16  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group