2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4  След.
 
 Re: Урна с уменьшающейся вероятностью и сходящиеся ряды
Сообщение18.03.2016, 13:44 
Аватара пользователя


11/06/12
10390
стихия.вздох.мюсли
Otta в сообщении #1107606 писал(а):
Это невозможные события имеют нулевую вероятность. А обратное неверно. Если у события нулевая вероятность, оно не обязано быть невозможным.
Золотые слова, которые каждый, кто изучает тервер, обязан начертать алмазными остриями в уголках своих глаз! Skipper, вы опасно путаете математику и реальный мир, отсюда — каша в голове. ТВ это всё-таки в первую очередь абстрактная теория, постарайтесь это уяснить.

 Профиль  
                  
 
 Re: Урна с уменьшающейся вероятностью и сходящиеся ряды
Сообщение18.03.2016, 15:40 


24/03/09
25/02/25
665
Минск
И какие события из реального мира происходили с нулевой вероятностью?

 Профиль  
                  
 
 Re: Урна с уменьшающейся вероятностью и сходящиеся ряды
Сообщение18.03.2016, 15:48 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Skipper в сообщении #1107641 писал(а):
И какие события из реального мира происходили с нулевой вероятностью?
А где вообще в реальном мире вероятности? Максимум -- частоты. Вам же сказали, что
Aritaborian в сообщении #1107610 писал(а):
ТВ это всё-таки в первую очередь абстрактная теория, постарайтесь это уяснить.

 Профиль  
                  
 
 Re: Урна с уменьшающейся вероятностью и сходящиеся ряды
Сообщение19.03.2016, 06:09 
Заслуженный участник
Аватара пользователя


23/11/06
4171
Vince Diesel в сообщении #1107585 писал(а):
А если посчитать средний номер, на который приходится последний белый шар, не получится ли там бесконечноть?

Получится, конечно. Если $N$ - номер последнего белого шара, то $\{N < k\}$ означает, что все шары начиная с $k$-го чёрные, и вероятность этого события
$$\mathsf P(N < k) = \prod_{i=k}^\infty \left(1-\dfrac{1}{F(i)}\right) \sim \exp\left\{-\int_k^\infty \frac{1}{F(x)}\,dx\right\}.$$
Соответственно,
$$\mathsf P(N \geqslant k) \sim \int_k^\infty \frac{1}{F(x)}\,dx.$$
Поэтому матожидание $\mathsf EN$ конечно тогда и т.т., когда ряд из интегралов $\int_k^\infty \frac{1}{F(x)}\,dx$ сходится. В частности, если $k\cdot \int_k^\infty \frac{1}{F(x)}\,dx \not\to 0$, то матожидание бесконечно. Например, при $F(x)=x^2$.

А вот при $F(x)=x^3$ уже конечно.

(Оффтоп)

Вот только это вряд ли имеет отношение к предмету удивления ТС: что событие "появится белый шар" случается почти наверное конечное число раз, если ряд из обратных к $F(N)$ суммируем. Человек лемму Бореля - Кантелли открыл, а вы тут развели дискуссию о событиях нулевой вероятности. Почему-то когда есть числовая выборка, никто не вспоминает, что УЗБЧ гарантирует лишь сходимость почти наверное, а не на каждом элементарном исходе. Не ломают себе голову, а вдруг эта выборка есть реализация на том элементарном исходе, у которого нулевая вероятность, а берут себе выборочное среднее, и оценивают им неизвестное матожидание. Стоит ли после этого требовать от ТС, чтобы он каждую серию экспериментов подозревал на то, что она есть реализация события нулевой вероятности?


UPD: Минусы, замеченные ТС на 4-й стр. темы, убраны, вероятности вновь стали положительными. 23.04, 19.22 мск времени.

 Профиль  
                  
 
 Re: Урна с уменьшающейся вероятностью и сходящиеся ряды
Сообщение21.03.2016, 15:37 


24/03/09
25/02/25
665
Минск
--mS--, объясните в чем разница, если $F(x)=x^2$, или $F(x)=x^3$ ?
В обоих случаях, доказывается факт того что с вероятностью $1$, мы вытащим лишь конечное количество раз, белый шар.

Предположим, мы сделали уже $N$ попыток, причем $N$ - очень большое, и вероятность вытащить белый шар ничтожно мала. Означает ли это, что в случае $F(x)=x^2$, мы можем достоверно знать, что (после вот этих любых $N$ попыток) - в будущем белый шар когда-нибудь появится ?
А в случае с $F(x)=x^3$ обязательно будет существовать такое $N$, после которого белый шар никогда не появится в бесконечной серии экспериментов?
Спасибо.

 Профиль  
                  
 
 Re: Урна с уменьшающейся вероятностью и сходящиеся ряды
Сообщение21.03.2016, 15:47 


24/01/09
1347
Украина, Днепр
Skipper в сообщении #1107575 писал(а):
Цитата:

Не может. Случайный выбор точки на прямой - событие с ненулевой вероятностью. Когда мы выбираем какую-то точку на прямой, определяющую число, мы выбираем вычислимое число. Т.е. такое число, все цифры (знаки) которого, определяются какой-то конечной цепочкой правил. Чем длиннее эта цепочка правил, тем с меньшей вероятностью мы выберем такое число. А невычислимое число мы и вовсе выбрать не можем.

Гм, а невычислимые, когда он шарит по прямой, каким-то чудом уворачиваются?
Или кто поймался - тот, очевидно, вычислимый [вот такой процедурой отлова]?

(Напоминает моё тролльское доказательство равномощности отрезка и множества натуральных чисел)

 Профиль  
                  
 
 Re: Урна с уменьшающейся вероятностью и сходящиеся ряды
Сообщение21.03.2016, 19:03 
Заслуженный участник
Аватара пользователя


23/11/06
4171
Skipper в сообщении #1108252 писал(а):
--mS--, объясните в чем разница, если $F(x)=x^2$, или $F(x)=x^3$ ?
В обоих случаях, доказывается факт того что с вероятностью $1$, мы вытащим лишь конечное количество раз, белый шар.

Вы знакомы с понятием математического ожидания? У случайной величины, принимающей лишь конечные значения, математическое ожидание может быть бесконечно. При $F(x)=x^2$ у случайной величины $\nu$, равной номеру последнего испытания, в котором появился белый шар, бесконечное математическое ожидание. При $F(x)=x^3$ - конечное. И в том, и в другом случае $\mathsf P(\nu < \infty)=1$.

 Профиль  
                  
 
 Re: Урна с уменьшающейся вероятностью и сходящиеся ряды
Сообщение22.03.2016, 11:47 


24/03/09
25/02/25
665
Минск
--mS-- в сообщении #1108309 писал(а):
Вы знакомы с понятием математического ожидания? У случайной величины, принимающей лишь конечные значения, математическое ожидание может быть бесконечно. При $F(x)=x^2$ у случайной величины $\nu$, равной номеру последнего испытания, в котором появился белый шар, бесконечное математическое ожидание. При $F(x)=x^3$ - конечное. И в том, и в другом случае $\mathsf P(\nu < \infty)=1$.


Но почему? В обоих случаях теорвер говорит нам о том, что белый шар появится лишь конечное количество раз, т.е. будет существовать такая $N $ попытка, меньше бесконечности, после которого событие "появился белый шар", никогда не случится. Почему в первом случае матожидание равно бесконечности, а в другом нет? Получается, матожидание - здесь вообще ничего не означает, и оба случая, с функциями $F(x)=x^2$ и $F(x)=x^3 $, абсолютно эквивалентны? Или может, существует всё таки какая то разница (что нибудь типа того, что при $F(x)=x^2$ выпадение бесконечного количества белых шаров - событие с нулевой вероятностью, а при $F(x)=x^3$ - это невозможное событие).

Просто хочу понять, есть ли вообще какая то разница в этих двух случаях.

 Профиль  
                  
 
 Re: Урна с уменьшающейся вероятностью и сходящиеся ряды
Сообщение22.03.2016, 13:22 
Заслуженный участник


27/04/09
28128
Skipper в сообщении #1108428 писал(а):
В обоих случаях теорвер говорит нам о том, что белый шар появится лишь конечное количество раз
Да нет же, не говорит. Вероятностное пространство состоит из всех возможных последовательностей, включая те, где белый шар всё появляется и появляется. Если оно не должно их включать, вы должны изменить способ его построения, поскольку оно сейчас не берётся с потолка.

Skipper в сообщении #1108428 писал(а):
Или может, существует всё таки какая то разница (что нибудь типа того, что при $F(x)=x^2$ выпадение бесконечного количества белых шаров - событие с нулевой вероятностью, а при $F(x)=x^3$ - это невозможное событие).
Невозможность не получится, потому что это событие содержит элементарные исходы (элементы вероятностного пространства) (см. выше).

 Профиль  
                  
 
 Re: Урна с уменьшающейся вероятностью и сходящиеся ряды
Сообщение22.03.2016, 13:51 


24/03/09
25/02/25
665
Минск
arseniiv, ничто не мешает вам, допускать возможность, что в ходе какого-то, любого эксперимента, вы увидите событие с вероятностю равной $0$. Я же, такого не допускаю, потому мою цитату "В обоих случаях теорвер говорит нам о том, что белый шар появится лишь конечное количество раз" - следует понимать так - "В обоих случаях теорвер говорит нам о том, что белый шар появится лишь конечное количество раз - со 100-процентной вероятностью".

И хочу понять - "Получается, матожидание - здесь вообще ничего не означает, и оба случая, с функциями $F(x)=x^2$ и $F(x)=x^3 $, абсолютно эквивалентны? Или может, существует всё таки какая то разница". Хотя бы логическая.

Кто не понимает подробностей с шарами, предложу другой вариант этой задачи.

Предположим, в мире иногда случаются некие события с некой вероятностью. (заранее событие предсказать невозможно, т.к. оно чисто вероятностное). Начались они во 2 году нашей эры (2 г. н.э.), продолжаются и ныне в 2016 году, и будут продолжаться в будущем.
Вероятность наступления события в году $N$, равна $1 / F(N)$. Вот сейчас $1/F(2016)$. Функция $F(N)$ - возрастающая, потому с каждым следующим годом, вероятность события уменьшается, и они происходят всё реже. Но и количество лет в будущем - бесконечно. Существуют функции $F(N)$, такие что - случится такой год $N$, в котором это событие наступит В ПОСЛЕДНИЙ раз, и больше за бесконечное время, это событие уже не случится никогда. (и это со 100% вероятностью). Какая логическая разница (или вообще любая разница) имеется, для случаев, когда матожидание, описанное --mS-- бесконечно и конечно?
Если разницы нет никакой, (т.е. случаи эквивалентны) какой вообще смысл здесь имеет само матожидание, и что оно означает?
Зачем его вообще рассчитывать?

Почему матожидание в случае с $F(x)=x^2$ оказалось бесконечным, в в случае $F(x)=x^3$ оно конечно, если никакой разницы нет.. :shock:

Факт того, что при $F(x)=x^2$ матожидание бесконечно, повергает в замешательство, т.к. мы точно знаем что со 100% вероятностью $N$ будет конечно, какую связь может иметь конечная величина, с бесконечной? Может быть, если бы мы провели большую серию подобных экспериментов, то при $F(x)=x^3$, среднее величина $N$, при котором выпадало бы это событие в последний раз, сходилось бы к какому то значению, а при $F(x)=x^2$ оно просто ни к чему не сходится, в этом и разница?

--mS--, мы можем взять некое число $M$, и доказать, что при функции $F(x)=x^2$, события не наступают никогда при значениях, бОльших чем $M$, со сколь угодно близкой к $1$, вероятностью (т.е. $1-\varepsilon$) ?

 Профиль  
                  
 
 Re: Урна с уменьшающейся вероятностью и сходящиеся ряды
Сообщение22.03.2016, 14:25 
Заслуженный участник


27/04/09
28128
Skipper в сообщении #1108463 писал(а):
Я же, такого не допускаю, потому мою цитату "В обоих случаях теорвер говорит нам о том, что белый шар появится лишь конечное количество раз" - следует понимать так - "В обоих случаях теорвер говорит нам о том, что белый шар появится лишь конечное количество раз - со 100-процентной вероятностью".
Тогда не стоит спрашивать о том, будет ли событие невозможным или просто иметь веростность 0. А вы выше спрашивали. Не стыкуется!

Skipper в сообщении #1108463 писал(а):
Какая логическая разница (или вообще любая разница) имеется, для случаев, когда матожидание, описанное --mS-- бесконечно и конечно?
Такая, которая заключена в определении матожидания. Всё интересующее можно вывести из него.

Skipper в сообщении #1108463 писал(а):
Зачем его вообще рассчитывать?
Действительно, незачем. Хотя, говорят, были какие-то неравенства, позволяющие что-то оценить, зная только матожидание — да ну кому они нужны сейчас, правда?

-- Вт мар 22, 2016 16:26:30 --

Skipper в сообщении #1108463 писал(а):
Почему матожидание в случае с $F(x)=x^2$ оказалось бесконечным, в в случае $F(x)=x^3$ оно конечно, если никакой разницы нет..
:shock:
Если никакой разницы нет, то $\forall x\in\mathbb R.\;x^2 = x^3$. Это математика.

 Профиль  
                  
 
 Re: Урна с уменьшающейся вероятностью и сходящиеся ряды
Сообщение22.03.2016, 18:07 
Заслуженный участник
Аватара пользователя


13/08/08
14496
Хочу оправдаться перед --mS--, так как заговорил в теме о невозможных событиях и, возможно, зря. Но, во-первых, это было сделано в рамках объемлющей темы, из которой эту вытащили, и я просто сказал, о том, что меня удивило <в детстве :-) >
Во-вторых, я думаю, что преподаватели нас слишком быстро гонят по курсу, не давая глубоко уяснить весьма увлекательные основы теории, даже на бытовом уровне. Ну да, теория разработана, всё написано в учебнике, но неужели надо ждать пенсии, чтобы внимательно и не торопясь, во всех подробностях и с примерами уяснить понятия независимости, невозможности, вероятности на философском, чувственном уровне. Мне кажется, ТС это и хочет сделать. Это и моя мечта :oops: .

 Профиль  
                  
 
 Re: Урна с уменьшающейся вероятностью и сходящиеся ряды
Сообщение22.03.2016, 20:44 
Заслуженный участник
Аватара пользователя


23/11/06
4171
Skipper в сообщении #1108463 писал(а):
Если разницы нет никакой, (т.е. случаи эквивалентны) какой вообще смысл здесь имеет само матожидание, и что оно означает?
Зачем его вообще рассчитывать?

Почему бы Вам этот вопрос не адресовать непосредственно Vince Diesel?
Vince Diesel в сообщении #1107585 писал(а):
А если посчитать средний номер, на который приходится последний белый шар, не получится ли там бесконечноть?

Я всего лишь ответила на его вопрос (на который он и сам, впрочем, знал ответ), тогда как Вы пытались ему сообщить, что это невозможно.
Skipper в сообщении #1108463 писал(а):
Может быть, если бы мы провели большую серию подобных экспериментов, то при $F(x)=x^3$, среднее величина $N$, при котором выпадало бы это событие в последний раз, сходилось бы к какому то значению, а при $F(x)=x^2$ оно просто ни к чему не сходится, в этом и разница?

Ну пусть будет так :mrgreen: Это называется У(силенным)ЗБЧ. Среднее арифметическое независимых и одинаково распределённых случайных величин сходится с вероятностью 1 тогда и только тогда, когда их математическое ожидание конечно. Так что можно считать, что разница в этом.
Skipper в сообщении #1108463 писал(а):

--mS--, мы можем взять некое число $M$, и доказать, что при функции $F(x)=x^2$, события не наступают никогда при значениях, бОльших чем $M$, со сколь угодно близкой к $1$, вероятностью (т.е. $1-\varepsilon$) ?

Скоро мы тут переоткроем весь тервер.
Это верно абсолютно для любой собственной (т.е. конечной с вероятностью 1) случайной величины $N$. В этом случае $\mathsf P(N \leqslant M)\to 1$ при $M\to\infty$, т.е. для всякого $\varepsilon$ найдётся $M$ такое, что $\mathsf P(N \leqslant M) \geqslant 1-\varepsilon$. В том числе это верно и для номера последнего белого шара, если $\mathsf P(N<\infty)=1$.

 Профиль  
                  
 
 Re: Урна с уменьшающейся вероятностью и сходящиеся ряды
Сообщение22.03.2016, 21:04 


24/03/09
25/02/25
665
Минск
--mS--, спасибо, стало более понятно.

--mS-- в сообщении #1108524 писал(а):
Почему бы Вам этот вопрос не адресовать непосредственно Vince Diesel?


Vince Diesel, и вправду, какой смысл здесь считать матожидание?

 Профиль  
                  
 
 Re: Урна с уменьшающейся вероятностью и сходящиеся ряды
Сообщение22.03.2016, 23:13 
Заслуженный участник


25/02/11
1804
Skipper в сообщении #1108527 писал(а):
Vince Diesel, и вправду, какой смысл здесь считать матожидание?

Это было замечание к тому, что я уже цитировал
Skipper в сообщении #1107329 писал(а):
И всё таки, должен наступить момент, когда мы в последний раз вытащим белый шар.. После этого, значит, тянем шары, бесконечное количество раз, каждый раз с ненулевой вероятностью вытащить белый шар, надеемся, и всё таки, больше никогда, белый шар не появится.

Никогда то никогда, да только неизвестно, когда такой момент настанет, мб и через очень много испытаний, раз матожидание бесконечное.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 52 ]  На страницу Пред.  1, 2, 3, 4  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group