2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Биномиальный коэффициент из n по 0
Сообщение22.02.2016, 23:14 
Помогите, пожалуйста, разобраться, в чем проблема в моих рассуждениях при вычислении биномиального коэффициента из n по 0 для формулы без факториалов в числителе. Вопрос возник из необходимости вычисления $\binom{\frac{1}{3}}{0}$, однако он оказался актуален и для целых n, например, для $\binom{n}{k}$=$\binom{3}{0}$.
По известной формуле $\binom{3}{0}$=$\frac{ n! }{(n-k)! k! }$ = $\frac{3!}{3!0!}$ = 1$. Однако эту формулу можно переписать в виде $$\frac{n(n-1)...(n-k+1)}{k!}$$ - и если в предыдущем варианте мы получали единицу в результате деления одинаковых чисел $3!$ в числителе и в знаменателе, то здесь я совершенно не могу понять, в результате чего мы получим единицу. Разве что в числителе мы каким-то образом получаем $0!$ или $1!$, но откуда они возьмутся? Ведь $-k+1=0+1=1$, тогда $n-k=n+(-k+1)=3+1=4$, но в этом случае получаем бессмыслицу, т.к. по формуле $n$ должно уменьшаться, а мы получили следующий множитель больше n. Мне кажется некорректным здесь просто усилием воли записать $0!$, т.к. бессмыслица не равна нулю и тем более с факториалом (то есть единице). Так откуда получаем результат 1 для $\binom{3}{0}$ по второй формуле?..

 
 
 
 Re: Биномиальный коэффициент из n по 0
Сообщение22.02.2016, 23:21 
Аватара пользователя
В числителе мы получаем произведение нуля сомножителей, которое естественно принять равным 1.

 
 
 
 Re: Биномиальный коэффициент из n по 0
Сообщение23.02.2016, 08:08 
К сожалению, непонятно, почему произведение нуля сомножителей естественно принять равным единице. Почему если ноль раз взять насколько сомножителей, то получим единицу?.. Возможно, я пытаюсь изобрести велосипед, но очень хотелось бы понять его устройство.

 
 
 
 Re: Биномиальный коэффициент из n по 0
Сообщение23.02.2016, 09:02 
$$\prod\limits_{a\in A}a\prod\limits_{a\in B}a=\prod\limits_{a\in A\coprod B}a\Rightarrow \prod\limits_{a\in\varnothing}=\dfrac{\prod\limits_{a\in M}a}{\prod\limits_{a\in M}a}=1$$
Аналогично $$\sum\limits_{a\in\varnothing}a=0, \ \ x^0=1$$ и т.п.

 
 
 
 Re: Биномиальный коэффициент из n по 0
Сообщение23.02.2016, 10:09 
Аватара пользователя
Прологарифмируйте, сведя произведение к сумме. Сумма из нуля слагаемых - 0. Возвращаясь обратно потенцированием - получаем единицу.

 
 
 
 Re: Биномиальный коэффициент из n по 0
Сообщение23.02.2016, 12:18 
fd8 в сообщении #1101466 писал(а):
К сожалению, непонятно, почему произведение нуля сомножителей естественно принять равным единице.

Естественно взять, как уже написали выше, единичный элемент в группе по умножению, так же как ноль — в группе по сложению.

 
 
 
 Re: Биномиальный коэффициент из n по 0
Сообщение24.02.2016, 08:36 
Да, спасибо!

 
 
 
 Re: Биномиальный коэффициент из n по 0
Сообщение24.02.2016, 12:42 
fd8 в сообщении #1101466 писал(а):
непонятно, почему произведение нуля сомножителей естественно принять равным единице.

Во-первых, конечно, потому, что это гамма-функция. Но есть и более общее (и более элементарное) основание полагать, что нулевой член в подобных случаях разумно считать единицей. Факториал -- он ведь определяется рекуррентно. А чтобы запустить рекурсию -- нужна база. А если принять за базу ноль -- то что тогда должно быть?..

Вот типичный аналог: $\omega_n(x)=(x-x_0)(x-x_1)\cdots(x-x_{n-1})$. Фактически это означает, что по определению $\omega_{k+1}(x)=\omega_k(x)\cdot(x-x_k)$. Но что тогда понимать под $\omega_0(x)$?.. А оно ведь нужно.

 
 
 
 Re: Биномиальный коэффициент из n по 0
Сообщение24.02.2016, 16:05 
fd8 в сообщении #1101466 писал(а):
К сожалению, непонятно, почему произведение нуля сомножителей естественно принять равным единице. Почему если ноль раз взять насколько сомножителей, то получим единицу?..

Проще всего это объяснить так. Если $a \neq 0$, то, с одной стороны, $\dfrac{a}{a}=1$, но, с другой-то стороны, $\dfrac{a}{a}=a^{1-1}=a^{0}$, вот и получаем, что $a^0=1$.

 
 
 [ Сообщений: 9 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group