2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Аналитическое решение системы
Сообщение03.02.2016, 15:59 
Столкнулся с вроде бы тривиальной задачей по планиметрии, которую в будущем нужно будет обобщать, но что-то пошло не так.
$$\left\{
\begin{array}{rcl}
a^2 = x^2 + y^2 + xy\\
b^2 = x^2 + z^2 + xz\\
c^2 = y^2 + z^2 + yz\\
\end{array}
\right.$$
где $a,b,c,x,y,z \geqslant 0$. Нужно разрешить систему аналитически относительно ${x,y,z}$. Простые методы ничего внятного не дали, озадачивание Mathematic'и или Mapl'a тоже.

Если внимательно присмотреться, то видно, что система получена путём применения теоремы косинусов к треугольнику в специфическом аффинном базисе. Исходная задача - из точки выходят три луча, между ними углы в $\frac{2\pi}{3}$. На каждом луче выбрана точка. Очевидно, если эти точки последовательно соединить - будет треугольник. Расстояния между последовательно соединёнными точками известно, т.е. стороны треугольника известны. Нужно найти расстояния от исходной точки до вершин треугольника по сторонам.

Буду благодарен за любые конструктивные идеи, что с этим можно дальше делать)

 
 
 
 Re: Аналитическое решение системы
Сообщение03.02.2016, 17:16 
Иными словами, дан треугольник, и надо найти точку внутри него такую, что стороны из неё видны под углом $\frac{2\pi i}{3}$ (надеюсь, правильно сказал?).
Пусть треугольник у нас в комплексной плоскости, его вершины - $a,b,c$ (против часовой стрелки). Тогда множество точек $z$ внутри треугольника, удовлетворяющих условию "сторона $ab$ видна под углом $\frac{2\pi i}{3}$" задаётся уравнением $$(z-b)=C_1 e^{\frac{2\pi i}{3}} (z-a),$$ где $C_1$ - положительный вещественный параметр (у нашего треугольника все углы меньше $\frac{2\pi i}{3}$ по построению, поэтому это верно). Аналогично со стороной $bc$: $$(z-c)=C_2 e^{\frac{2\pi i}{3}} (z-b).$$ Нужно найти пересечение этих кривых (двух достаточно).
Для удобства можно разместить треугольник так, что $a=0, b\in \mathbb{R}$, ну а $c=p+iq$, никуда не денешься.
Далее, выражаем из обоих равенств $z$, приравниваем, получаем соотношение на неизвестные $C_1$ и $C_2$. Казалось бы, переменных две, но они вещественные и положительные. Выразив, например, $C_1$ через $C_2$ и записав условие положительности этого комплексного выражения, находим $C_2$.

Я проделал на бумаге, всё аналитически выражается.

P.S. Может, спецы что-нибудь попроще/поэлегантней знают, но мне и так понравилось :oops:

 
 
 
 Re: Аналитическое решение системы
Сообщение03.02.2016, 17:28 
NSKuber в сообщении #1096465 писал(а):
Иными словами, дан треугольник, и надо найти точку внутри него такую, что стороны из неё видны под углом $\frac{2\pi i}{3}$ (надеюсь, правильно сказал?).
Пусть треугольник у нас в комплексной плоскости, его вершины - $a,b,c$ (против часовой стрелки). Тогда множество точек $z$ внутри треугольника, удовлетворяющих условию "сторона $ab$ видна под углом $\frac{2\pi i}{3}$" задаётся уравнением $$(z-b)=C_1 e^{\frac{2\pi i}{3}} (z-a),$$ где $C_1$ - положительный вещественный параметр (у нашего треугольника все углы меньше $\frac{2\pi i}{3}$ по построению, поэтому это верно). Аналогично со стороной $bc$: $$(z-c)=C_2 e^{\frac{2\pi i}{3}} (z-b).$$ Нужно найти пересечение этих кривых (двух достаточно).
Для удобства можно разместить треугольник так, что $a=0, b\in \mathbb{R}$, ну а $c=p+iq$, никуда не денешься.
Далее, выражаем из обоих равенств $z$, приравниваем, получаем соотношение на неизвестные $C_1$ и $C_2$. Казалось бы, переменных две, но они вещественные и положительные. Выразив, например, $C_1$ через $C_2$ и записав условие положительности этого комплексного выражения, находим $C_2$.

Я проделал на бумаге, всё аналитически выражается.

P.S. Может, спецы что-нибудь попроще/поэлегантней знают, но мне и так понравилось :oops:


Спасибо, но интерпретация задачи немного не верна. Координаты точки нас не интересуют, углы между лучами уже $\frac{2\pi i}{3}$. Нужно найти такие отрезки лучей, чтобы стороны треугольника, построенные на концах отрезков, были заданными.

UPD: Специальными программами для построения не владею, поэтому вот рисунок в Paint :) Изображение

Стороны AB, BC, AC известны, углы BOA, BOC, AOC - $\frac{2\pi i}{3}$. Найти AO, BO, CO. Никаких координат нет, только длины.

P.S. Рисунок плоский.

 
 
 
 Re: Аналитическое решение системы
Сообщение03.02.2016, 17:32 
harati
Даны стороны треугольника. По ним находим координаты вершин в предложенном расположении. По ним координаты точки-центра с помощью техники, предложенной выше. Что мешает теперь вычислить длины отрезков, когда все координаты известны? Все шаги можно выразить явными формулами и получить выражение длин отрезков через известные длины сторон.

 
 
 
 Re: Аналитическое решение системы
Сообщение03.02.2016, 17:36 
NSKuber в сообщении #1096475 писал(а):
harati
Даны стороны треугольника. По ним находим координаты вершин в предложенном расположении. По ним координаты точки-центра с помощью техники, предложенной выше. Что мешает теперь вычислить длины отрезков, когда все координаты известны? Все шаги можно выразить явными формулами и получить выражение длин отрезков через известные длины сторон.


Да, наверное ошибся с тем, что заранее не нарисовал картинку. В предыдущем сообщении уточнил условие. Варианты решения по прежнему неясны)

 
 
 
 Re: Аналитическое решение системы
Сообщение03.02.2016, 17:51 
harati
Вариант-то уже есть - правда он громоздок и вы упорно отказываетесь его воспринимать.
Вот посмотрите на ваш же рисунок.
Давайте введём систему координат с началом в точке $A$ и осью абсцисс, содержащей сторону $AC$. Длины сторон знаем, значит можем найти координаты вершин в этой системе координат. А если в этой же системе координат теперь найдём точку $O$, то сможем и искомые длины легко найти! Точка $O$ - точка, из которой все стороны треугольника (достаточно двух) видны под углом $\frac{2\pi i}{3}$. Алгоритм нахождения координат такой точки я и предложил в своём первом сообщении этой темы.

 
 
 
 Re: Аналитическое решение системы
Сообщение03.02.2016, 17:53 
NSKuber в сообщении #1096483 писал(а):
harati
Вариант-то уже есть - правда он громоздок и вы упорно отказываетесь его воспринимать.
Вот посмотрите на ваш же рисунок.
Давайте введём систему координат с началом в точке $A$ и осью абсцисс, содержащей сторону $AC$. Длины сторон знаем, значит можем найти координаты вершин в этой системе координат. А если в этой же системе координат теперь найдём точку $O$, то сможем и искомые длины легко найти! Точка $O$ - точка, из которой все стороны треугольника (достаточно двух) видны под углом $\frac{2\pi i}{3}$. Алгоритм нахождения координат такой точки я и предложил в своём первом сообщении этой темы.


Да, упустил, спасибо. Но он действительно не подходит, так как в первом сообщении указал, что задачу нужно будет обобщать на старшие размерности - аналогичный аффинный базис но уже из 4х осей, 4 точки, на которые натянут тетраэдр.

Ваш способ, к сожалению, при обобщении становится непомерно громоздким.

 
 
 
 Re: Аналитическое решение системы
Сообщение03.02.2016, 18:19 
harati
Вообще то это точка Торричелли (?): от нее сумма расстояний до вершин минимальна (в вершинах тр-ка сделаем дырки; пропустим через них веревочки; над столом веревочки свяжем; под столом к каждой подвесим единичную гирьку, и отпустим это дело. Когда всё устаканится, точка соединения веревочек и будет искомой: сумма сил равна нулю).
Известен геометрический способ её построения: в тр-ке $ABC$ надо точку $B$ повернуть (наружу) относительно $A$,получим точку $D$; На отрезке $DC$ надо найти точку $O$ так, что угол $AOD$ равен $\frac{\pi}{3}$ Это она и есть. Но - Вы правы, способ не обобщается...

 
 
 
 Re: Аналитическое решение системы
Сообщение03.02.2016, 18:27 
Можно, например, взять разности уравнений:$$a^2-b^2=(y-z)(x+y+z), a^2-c^2=(x-z)(x+y+z)$$Отсюда $\dfrac {a^2-b^2}{a^2-c^2}=\dfrac {y-z}{x-z}$ и т.д.

 
 
 
 Re: Аналитическое решение системы
Сообщение03.02.2016, 18:31 
harati

Всё у нас симметрично... Так, может, и делать через симметрические многочлены?

 
 
 
 Re: Аналитическое решение системы
Сообщение03.02.2016, 21:25 
Математика выдает ответ, но здоровый... Если он и обобщится на старшие размерности, то будет еще здоровее :-)

 
 
 
 Re: Аналитическое решение системы
Сообщение03.02.2016, 23:22 
DeBill в сообщении #1096502 писал(а):
harati
Вообще то это точка Торричелли (?): от нее сумма расстояний до вершин минимальна (в вершинах тр-ка сделаем дырки; пропустим через них веревочки; над столом веревочки свяжем; под столом к каждой подвесим единичную гирьку, и отпустим это дело. Когда всё устаканится, точка соединения веревочек и будет искомой: сумма сил равна нулю).
Известен геометрический способ её построения: в тр-ке $ABC$ надо точку $B$ повернуть (наружу) относительно $A$,получим точку $D$; На отрезке $DC$ надо найти точку $O$ так, что угол $AOD$ равен $\frac{\pi}{3}$ Это она и есть. Но - Вы правы, способ не обобщается...


Эта точка Торичелли когда треугольник не тупоугольный. Если тупоугольный - точка Торичелли будет лежать на вершине с тупым углом, а эта точка - вне самого треугольника.

mihiv в сообщении #1096505 писал(а):
Можно, например, взять разности уравнений:$$a^2-b^2=(y-z)(x+y+z), a^2-c^2=(x-z)(x+y+z)$$Отсюда $\dfrac {a^2-b^2}{a^2-c^2}=\dfrac {y-z}{x-z}$ и т.д.


Спасибо, разности я брал, но не совсем такие.

DeBill в сообщении #1096508 писал(а):
Всё у нас симметрично... Так, может, и делать через симметрические многочлены?


А что именно вы имеете ввиду ?

 
 
 
 Re: Аналитическое решение системы
Сообщение04.02.2016, 11:35 
Аватара пользователя
Можно найти линейное соотношение между неизвестными, используя формулу разности кубов. Но даст ли оно одно существенное продвижение?

 
 
 
 Re: Аналитическое решение системы
Сообщение04.02.2016, 12:18 
harati
harati в сообщении #1096598 писал(а):
Эта точка Торичелли когда треугольник не тупоугольный. Если тупоугольный

Ну да (точнее, если углы меньше 120). Но расчетные формулы, полученные из геометрического решения, видимо, выживут.
harati в сообщении #1096598 писал(а):
А что именно вы имеете ввиду ?

Ну, сосчитать симметрические многочлены от $a^2,b^2,c^2$, (точнее, от правых частей Вашей системы) и выразить их через элементарные от $x,y,z$. Может, получится приличная система для них ? (я не смотрел).

 
 
 
 Re: Аналитическое решение системы
Сообщение04.02.2016, 17:50 
У меня получилось так:

$y=\frac{c^2+b^2-a^2-z^2}{2z}$

$x=\frac{a^2-b^2}{y-z}-(y+z)$

Умножить первое на(z), второе на (y); Вычесть из первого второе; находится $(x^2)$; приравниваете к $(x^2)$, найденному из второго и находите (x); приравниваете два значения для (x) и находите (yz); находите $(yz)$ из третьего уравнения и сложив их, находите $(y)$. Далее получаете уравнение от одной переменной, если я не ошиблась.

 
 
 [ Сообщений: 16 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group