2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Максимально возможное значение Eexp(X) при ограничениях на X
Сообщение28.12.2015, 01:22 
Пусть $P(|X|\leq b)=1$, $EX=0$ и $DX=\sigma^2$ $b,\sigma>0$. Какое максимальное значение может принять $Ee^X$?

Из выпуклости $e^X$ следует неравенство на отрезке $[-b,b]$:
$$
e^X\leq\dfrac{e^b-e^{-b}}{2b}X+\frac{e^b+e^{-b}}{2} 
$$
$$
Ee^X\leq\dfrac{e^b-e^{-b}}{2b}EX+\frac{e^b+e^{-b}}{2}=\frac{e^b+e^{-b}}{2}
$$

Оценка получается не достижимой, потому что дисперсия выходит $b^2$. Надо как-то вовлечь в участие ограничение на дисперсию. :roll:

 
 
 
 Re: Максимально возможное значение Eexp(X) при ограничениях на X
Сообщение29.12.2015, 07:16 
Почему мои вопросы в основном игнорируются? Я как-то не так формулирую или что-то другое нужно исправить? :-(

 
 
 
 Re: Максимально возможное значение Eexp(X) при ограничениях на X
Сообщение29.12.2015, 08:03 
Аватара пользователя
Можно попробовать искать плотность как решение вариационной задачи. Впрочем, это может быть не лучший совет, просто первое, что в голову пришло.

 
 
 
 Re: Максимально возможное значение Eexp(X) при ограничениях на X
Сообщение29.12.2015, 10:38 
Аватара пользователя
У меня такое впечатление, что (в силу той же выпуклости) наибольшее значение матожидания достигается на таком же симметричном решении, только не упёршись в b, а исходя из ограничения на дисперсию.

 
 
 
 Re: Максимально возможное значение Eexp(X) при ограничениях на X
Сообщение29.12.2015, 13:20 
2old в сообщении #1086380 писал(а):
Оценка получается не достижимой, потому что дисперсия выходит $b^2$. Надо как-то вовлечь в участие ограничение на дисперсию.


Ограничение на дисперсию можно использовать. Так как функция $e^{\frac X2}$ тоже выпуклая, то:
$$e^{\frac X2}\leq\dfrac{e^{\frac b2}-e^{\frac {-b}2}}{2b}X+\frac{e^{\frac b2}+e^{\frac {-b}2}}{2}$$и, следовательно:


$$Ee^X=E(e^{\frac X2})^2\leq \dfrac {\sigma ^2}{b^2}\sh ^2(\frac b2)+\ch ^2(\frac b2)$$

 
 
 
 Re: Максимально возможное значение Eexp(X) при ограничениях на X
Сообщение29.12.2015, 15:56 
Аватара пользователя
ex-math в сообщении #1086666 писал(а):
Можно попробовать искать плотность
Да там небось и не будет плотности.

 
 
 
 Re: Максимально возможное значение Eexp(X) при ограничениях на X
Сообщение29.12.2015, 16:12 
Для финитного распределения, заданного на $[-b,b] $ с нулевым средним верно неравенство $\sigma\le b$. При $\sigma=b$ функция плотности сосредоточена в граничных точках: $p(x)=\frac{\delta(x+b)+\delta(x-b)}2$ и, как Вами показано, выполнено $\max Ee^X=\ch(b)$.
Думаю, что при $\sigma<b$ выполнено $\max Ee^X=\ch(\sigma)$ и максимум достигается на функции плотности $p(x)=\frac{\delta(x+\sigma)+\delta(x-\sigma)}2$.

 
 
 
 Re: Максимально возможное значение Eexp(X) при ограничениях на X
Сообщение03.01.2016, 15:14 
VPro в сообщении #1086812 писал(а):
Думаю, что при $\sigma<b$ выполнено $\max Ee^X=\ch(\sigma)$ и максимум достигается на функции плотности $p(x)=\frac{\delta(x+\sigma)+\delta(x-\sigma)}2$.

На самом деле $\ch (\sigma )$ - это $\min Ee^X$, на четных плотностях вероятности $(p(x)=p(-x))$. Действительно, для четных плотностей $$Ee^X=\sum \limits _{k=0}^{\infty }\dfrac {EX^{2k}}{(2k)!}\geq \sum \limits _{k=0}^{\infty }\dfrac {(EX^2)^k}{(2k)!}=\ch (\sigma )$$Так как $EX^{2k}\geq (EX^2)^k=\sigma ^{2k}$.

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group