2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Комбинаторная задача
Сообщение18.10.2015, 21:51 
Комбинатоная вероятность.

Какова вероятность того, что наудачу выбранное пятизначное число содержит хотя бы одну цифру 6 и не делится на 4.

Вероятность того, что содержит хотя бы одну цифру $6$ равна $p_1=1-\dfrac{8}{9}\cdot (0,9)^5$

Вероятность того, что не делится на $4$ равна $p_2=0,25$

Вероятность искомого события равна $p_1\cdot p_2$. Верно?

 
 
 
 Re: Комбинаторная задача
Сообщение18.10.2015, 22:59 
Аватара пользователя
r.t.w.z в сообщении #1064074 писал(а):
Верно?

Нет.

 
 
 
 Re: Комбинаторная задача
Сообщение18.10.2015, 23:00 
Аватара пользователя
r.t.w.z в сообщении #1064074 писал(а):
...
Верно?

Есть один полезный метод самоконтроля, я советую Вам научиться им пользоваться. Возьмите упрощённый вариант условия, для которого Вы способны дать точный ответ на вопрос задачи в уме. Например, подсчитайте все такие двузначные числа. А потом сравните с аналогом Вашей формулы для двузначных чисел. После чего нужно попытаться самостоятельно разобраться, где были допущены ошибки -- на двузначных числах это не так сложно будет заметить.

 
 
 
 Re: Комбинаторная задача
Сообщение18.10.2015, 23:17 
Спасибо. Для двухзначных чисел:

Вероятность того, что содержит хотя бы одну цифру $6$ равна $p_1=1-\dfrac{1}{9}\cdot (0,1)=\dfrac{18}{19}$

Вероятность того, что не делится на $4$ равна $p_2=1-\dfrac{20}{90}=\dfrac{7}{9}$

Вероятность искомого события равна $p_1\cdot p_2$. Верно?

Для пятизначных чисел:

Вероятность того, что содержит хотя бы одну цифру $6$ равна $p_1=1-\dfrac{1}{9}\cdot (0,1)^4$

Вероятность того, что не делится на $4$ равна $p_2=1-\dfrac{20}{90}=\dfrac{7}{9}$ (использовался признак делимости на 4)

Вероятность искомого события равна $p_1\cdot p_2$

Теперь правильно?

 
 
 
 Re: Комбинаторная задача
Сообщение18.10.2015, 23:23 
Аватара пользователя
r.t.w.z в сообщении #1064130 писал(а):
Верно?

r.t.w.z в сообщении #1064130 писал(а):
Теперь правильно?

Нет.

 
 
 
 Re: Комбинаторная задача
Сообщение18.10.2015, 23:25 
Аватара пользователя
Хм... А сколько всего двузначных чисел и сколько из них (не) содержит 6? grizzly же вам посоветовал посчитать непосредственно.

 
 
 
 Re: Комбинаторная задача
Сообщение18.10.2015, 23:31 
Спасибо.
Всего двузначных чисел 90. Те, что содержат 6: $16,26,36,46,56,60,61,62,63,64,65,66,67,68,69,76,86,96$. Всего 18 штук. Те, что не содержать 6 будет $90-18=82$ шутки. Теперь правильно?

Кажется, понял на что следует обратить внимание.

 
 
 
 Re: Комбинаторная задача
Сообщение18.10.2015, 23:33 
Аватара пользователя
Вообще-то 18 чисел, вы 60 пропустили...

 
 
 
 Re: Комбинаторная задача
Сообщение18.10.2015, 23:34 
provincialka в сообщении #1064148 писал(а):
Вообще-то 18 чисел, вы 60 пропустили...

Спасибо, поправил!

 
 
 
 Re: Комбинаторная задача
Сообщение18.10.2015, 23:36 
Аватара пользователя
А что если числа с 6-кой и кот делятся на 4 совпадают?

 
 
 
 Re: Комбинаторная задача
Сообщение19.10.2015, 00:03 
r.t.w.z в сообщении #1064145 писал(а):
$90-18=82$
И вот это подправьте. И будьте внимательнее: проверку арифметики мы тут за редким исключением оставляем вам.

 
 
 
 Re: Комбинаторная задача
Сообщение19.10.2015, 00:17 
Про пятизначные числа $\overline{abcde}$. Количество пятизначных чисел будет $90 000$.
С первой цифрой $a=6$ будет $9000$ чисел.
Если первая цифра $a\ne 6$, то нужно искать шестерку среди последних четырех чисел $\overline{bcde}$.
Если первая цифра не $b= 6$, то таких четырехзначных чисел $\overline{bcde}$ ровно $900$.
Если $b\ne 6$, то нужно искать шестерку среди последних трех чисел $\overline{cde}$.
Если $c=6$, то таких чисел будет ровно $90$. Если $c\ne 0$, то нужно искать среди последних двух цифр шестерки, а таковых будет $18$.

Тогда количество пятизначных чисел с шестеркой будет $9000+900+90+18$. Правильно?

-- 19.10.2015, 00:17 --

iifat в сообщении #1064162 писал(а):
r.t.w.z в сообщении #1064145 писал(а):
$90-18=82$
И вот это подправьте. И будьте внимательнее: проверку арифметики мы тут за редким исключением оставляем вам.

Спасибо, $72$

 
 
 
 Re: Комбинаторная задача
Сообщение19.10.2015, 00:23 
Аватара пользователя
r.t.w.z в сообщении #1064166 писал(а):
Тогда количество пятизначных чисел с шестеркой будет $9000+900+90+18$. Правильно?

Проверьте себя: вычтите из общего количества пятизначных чисел количество тех из них, которые не содержат шестерки.

 
 
 
 Re: Комбинаторная задача
Сообщение19.10.2015, 00:32 
Brukvalub в сообщении #1064174 писал(а):
r.t.w.z в сообщении #1064166 писал(а):
Тогда количество пятизначных чисел с шестеркой будет $9000+900+90+18$. Правильно?

Проверьте себя: вычтите из общего количества пятизначных чисел количество тех из них, которые не содержат шестерки.


$90000-10008=79992$

Пока что это мало о чем говорит мне... Но видно что-то неверно.

 
 
 
 Re: Комбинаторная задача
Сообщение19.10.2015, 00:36 
r.t.w.z в сообщении #1064166 писал(а):
Если $c\ne 0$, то нужно искать среди последних двух цифр шестерки, а таковых будет $18$.
А $06$ забыли ... В конце пятизначного оно допустимо.
И среди пятизначных есть как минимум $10000$ чисел с шестёркой: $60000..69999$. Неужели среди остальных пятизначных всего 8 чисел с шестёрками?! ;-)

 
 
 [ Сообщений: 26 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group