2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Интеграл Лебега что это
Сообщение27.08.2015, 18:34 
Читаю наиболее понятное мне определение отсюда:
$I=\int\limits_a^b\varphi(x) dx$, где $\varphi(x)$ - характеристическая функция "обычной функции" (множества) на отрезке $a,b$, а $dx$ - это дифференциал "обычной функции" (а не характеристической).
Правильно ли я понимаю это. И если да, то вычисление интеграла лебега - это подсчет количества (а не величины) всех значений "обычной функции", которые попадают в интервал $a,b$ (то есть $a,b$ - это значения функции, а не аргумента?
ведь $\varphi(x)$ - либо единицы либо нули. значит в подсчет попадают только такие значения "обычной функции" по $x$, которые находятся внутри интервала $a,b$

 
 
 
 Re: Интеграл Лебега что это
Сообщение27.08.2015, 20:07 
Аватара пользователя
upgrade в сообщении #1048461 писал(а):
Читаю наиболее понятное мне определение отсюда:
$$I=\int\limits_a^b\varphi(x) dx$$ где $\varphi(x)$ - характеристическая функция "обычной функции" (множества) на отрезке $a,b$, а $dx$ - это дифференциал "обычной функции" (а не характеристической).

Бррр. По Вашей ссылке написано не совсем то, что Вы перенесли сюда. Прочитайте внимательней.
Никаких характеристических функций "обычных функций" и дифференциалов "обычной функции" там нет.

 
 
 
 Re: Интеграл Лебега что это
Сообщение27.08.2015, 20:10 
Совершенно не так.

Пусть $\varphi(x)$ - характеристическая функция множества $E$:
$
\varphi(x)=\begin{cases}1,&\text{if}\quad x\in E;\\0,&\text{if}\quad x\notin E.\end{cases}$

Тогда (по определению) интеграл

$\int\limits_{a}^{b}\varphi(x)\,dx=\mu E$

А уже дальше "обычную" функцию приближаем линейной комбинацией характеристических.

В итоге, грубо говоря, для каждого "значения" функции мы находим меру множества, на котором это "значение" принимается, умножаем на это "значение", а потом все это складываем.

 
 
 
 Re: Интеграл Лебега что это
Сообщение27.08.2015, 22:09 
Аватара пользователя
А откуда появилась сама идея: кинуться читать первую попавшую помойку ссылку, вместо того, чтобы найти и проработать какой-либо достоверный учебник? :shock:

 
 
 
 Re: Интеграл Лебега что это
Сообщение28.08.2015, 10:38 
Cash в сообщении #1048482 писал(а):
В итоге, грубо говоря, для каждого "значения" функции мы находим меру множества

а как мы ее находим, разве не "пробегая" $dx$-ом по функции? $dx$ он чей, если характеристической функции, то для вычисления интеграла надо сперва найти множества, в которые будут попадать значения искомой функции.
Dan B-Yallay в сообщении #1048479 писал(а):
Никаких характеристических функций "обычных функций" и дифференциалов "обычной функции" там нет.

у меня есть функция, допустим $y=x^3$ как мне вычислить на отрезке $[0,1]$ интеграл Лебега?

я так понял находим все $y$, которые на этом отрезке принимают значение $0.1$, все игреки с $0.2$, затем умножаем количество на их "веса" - это $0.1$, $0.2$ и получаем число которое сумма по интегралу Лебега.
пробегаем по отрезку $dx$-ом, но до этого надо построить как-то характеристичекую функцию, которая будет принимать то ноль то один в зависимости от очередного $x+dx$

Brukvalub в сообщении #1048513 писал(а):
А откуда появилась сама идея: кинуться читать первую попавшую помойку ссылку, вместо того, чтобы найти и проработать какой-либо достоверный учебник?

Потому что я взял учебник Никольского том 2 "Курс математического анализа"
открыл страницу 333, а там чтобы понимать что пишется, надо прочитать все предыдущие 333 страницы...

 
 
 
 Re: Интеграл Лебега что это
Сообщение28.08.2015, 10:56 
Аватара пользователя
upgrade в сообщении #1048697 писал(а):
...

Brukvalub в сообщении #1048513 писал(а):
А откуда появилась сама идея: кинуться читать первую попавшую помойку ссылку, вместо того, чтобы найти и проработать какой-либо достоверный учебник?

Потому что я взял учебник Никольского том 2 "Курс математического анализа"
открыл страницу 333, а там чтобы понимать что пишется, надо прочитать все предыдущие 333 страницы...

Безупречная логика, аж страшно становится...
Продолжу рассуждение: " у меня заболел живот, я пошел к гастроэнтерологу, но там была длинная очередь, и тогда я пошел к бабке-целительнице, там очереди не было. Бабка дала мне грязную бутылку с мутной жижей, заткнутую газетой, я давлюсь и пью эту гадость уже вторую неделю, почему-то живот болит еще сильнее... Зато к бабке вышло без очереди и совсем не дорого" :D

 
 
 
 Re: Интеграл Лебега что это
Сообщение28.08.2015, 11:02 
Аватара пользователя
upgrade в сообщении #1048697 писал(а):
Потому что я взял учебник Никольского том 2 "Курс математического анализа"
открыл страницу 333, а там чтобы понимать что пишется, надо прочитать все предыдущие 333 страницы...

А до этого Никольского все учебники могли понимать с любого места?

 
 
 
 Re: Интеграл Лебега что это
Сообщение28.08.2015, 11:30 
upgrade в сообщении #1048697 писал(а):
а как мы ее находим, разве не "пробегая" $dx$-ом по функции? $dx$ он чей, если характеристической функции, то для вычисления интеграла надо сперва найти множества, в которые будут попадать значения искомой функции.

Ну я жалею, что начал объясняться на пальцах. В вашем случае желательна хоть какая-то математическая культура(которая и вырабатывается прожевыванием нормальных учебников). Вы задаете не те вопросы и не так.
Ну ладно.
Вот постройте какую-нибудь линейную комбинацию из $10$ характеристических функций, "близкую" к $y=x^3$

 
 
 
 Re: Интеграл Лебега что это
Сообщение28.08.2015, 12:04 
Dan B-Yallay в сообщении #1048706 писал(а):
А до этого Никольского все учебники могли понимать с любого места?

Так выбор невелик. Время ограничено (как всегда) - либо надо хотя бы понять что такое интеграл Лебега, либо искать какое-то другое решение, а про Лебега забыть и не вспоминать. Сначала выбрал первое.

Cash в сообщении #1048712 писал(а):
Вот постройте какую-нибудь линейную комбинацию из характеристических функций, "близкую" к $y=x^3$

Если на это не отвечу, значит придется забросить интеграл Лебега.

 
 
 
 Re: Интеграл Лебега что это
Сообщение28.08.2015, 16:13 
А простенького интеграла Римана уже не хватает? Если задача практическая, то почему? (А если не практическая, странно, почему тогда нет времени.)

 
 
 
 Re: Интеграл Лебега что это
Сообщение28.08.2015, 16:19 
arseniiv в сообщении #1048759 писал(а):
Если задача практическая, то почему?

матожидание - интеграл Лебега.
arseniiv в сообщении #1048759 писал(а):
А простенького интеграла Римана уже не хватает?

может и хватает.
Но матожидание - это интеграл Лебега, а значит должен быть именно он. Руками то можно сделать, но все должно быть правильно, красиво и объясняемо.

 
 
 
 Re: Интеграл Лебега что это
Сообщение28.08.2015, 16:23 
У вас что, распределения какие-то особые? Если все абсолютно непрерывные, то интеграла Римана должно хватить с головой. :-) Там, где он определён, он совпадает с интегралом Лебега.

 
 
 
 Re: Интеграл Лебега что это
Сообщение28.08.2015, 16:33 
Нет, мы считаем математическое ожидание - положено.
Пишем инструкцию для работы сотрудникам. И установка такая - раз математики сказали, что матожидание - это интеграл Лебега, то хоть тресни, но должен вычисляться интеграл Лебега, даже для пары десятков величин с одинаковым распределением у каждой.

 
 
 
 Re: Интеграл Лебега что это
Сообщение28.08.2015, 16:50 
Аватара пользователя
Это чушь какая-то. Никакой же разницы нет.

 
 
 
 Re: Интеграл Лебега что это
Сообщение28.08.2015, 16:53 

(Оффтоп)

Так себе и представляю сингулярные распределения на практике. :roll:

 
 
 [ Сообщений: 28 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group