2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Хорошие натуральные числа
Сообщение21.07.2015, 20:37 
Здравствуйте! Пытаюсь разобраться с задачей, пока что не все выходит.

Натуральное число $k$ назовем хорошим, если найдется такое натуральное число $n$, что $k = nS(n)$, где $S(n)$ - сумма цифр десятичной записи числа $n$. Существуют ли три подряд идущих хороших числа?

Так как тут идет речь про сумму цифр и $k$ делится на сумму цифр. Скорее всего тут будет использоваться признак делимости на три.

Если $n$ однозначное число, то $k=n^2$. Три подряд однозначных хороших чисел не существует

Посмотрим несколько двузначных чисел, чтобы уловить закономерность. Я буду записывать в формате n|k|остаток при делении на 3

10|10|1
11|22|1
12|36|0
13|52|1
14|70|1
15|90|0
16|112|2
......

Я думаю, что ответ -- нет. $S(n)\ge 1$. Если $S(n)=1$, то число $n$ состоит из 1 и нескольких нулей. При этом $n=k$.

В этом случае число $k+1=n+1\ne (n+1)S(n+1)$, потому как $S(n+1)\le 2$. Подробнее оценка $k+1=n+1< 2(n+1)\le (n+1)S(n+1)$

Если же $S(n)\ge 2$, то тут сложнее, пока что запутался.

Вообщем, исходя из условия, предлагается найти такие натуральные $n$ (или доказать их отсутствие), что $(n+2)S(n+2)=(n+1)S(n+1)+1=nS(n)+2$.

Можете, плиз, пнуть в нужном направлении!

 
 
 
 Re: Хорошие натуральные числа
Сообщение21.07.2015, 21:07 
karandash_oleg в сообщении #1039256 писал(а):
16|112|2

:?:

 
 
 
 Re: Хорошие натуральные числа
Сообщение21.07.2015, 21:29 
Спасибо, что поправили.

10|10|1
11|22|1
12|36|0
13|52|1
14|70|1
15|90|0
16|112|1
17|136|1
18|162|0

То есть в любых трех членов последовательности, идущих по порядку, есть два, имеющих остаток единицу при делении на три, а значит эти члены отличаются на три или более. А коли так, то подряд идущих хороших чисел не существует.

Но как это можно доказать в общем виде -- пока что не очевидно. Можно подсказку зала?))

 
 
 
 Re: Хорошие натуральные числа
Сообщение21.07.2015, 22:56 
Аватара пользователя
Посмотрите, какие бывают остатки от деления на 3 у хороших чисел, и какие остатки бывают у 3х идущих подряд чисел ($0, 1, 2$ в каком-то порядке)

 
 
 
 Re: Хорошие натуральные числа
Сообщение21.07.2015, 23:26 
Аватара пользователя
karandash_oleg в сообщении #1039273 писал(а):
Можно подсказку зала?
А как связаны остатки от деления на $3$ самого числа $n$ и суммы его цифр?

 
 
 
 Re: Хорошие натуральные числа
Сообщение22.07.2015, 01:03 
Someone в сообщении #1039312 писал(а):
karandash_oleg в сообщении #1039273 писал(а):
Можно подсказку зала?
А как связаны остатки от деления на $3$ самого числа $n$ и суммы его цифр?

Они равны.

$k=(3m+r)(3l+r)=9ml+3m+3l+r^2$

Исходя из полученной формулы выходит при $r=0,1$ остаток от деления $k$ на три будет $0,1$.

Если $r=2$, то остаток от деления $k$ на три будет $1$

 
 
 
 Re: Хорошие натуральные числа
Сообщение22.07.2015, 02:47 
Аватара пользователя
Надеюсь, Вам этого достаточно, чтобы
karandash_oleg в сообщении #1039273 писал(а):
доказать в общем виде

 
 
 
 Re: Хорошие натуральные числа
Сообщение22.07.2015, 22:01 
Да, спасибо, все ясно, странно что сам не догадался изначально

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group