2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Взаимное расположение корней кубического уравнения
Сообщение26.06.2015, 17:19 
Рассмотрим кубическое уравнение с комплексными коэффициентами $\[{z^3} + az + b = 0\]$ .

Требуется найти все пары $\[(a,b)\]$ , при которых точки комплексной плоскости, соответствующие корням уравнения, лежат на одной прямой, причём одна из них является серединой отрезка между двумя другими.

Предполагаю, что это возможно лишь в том случае, когда все три корня - вещественные, то есть $\[\frac{{{b^2}}}{4} + \frac{{{a^3}}}{{27}} < 0\]$.

Далее, пусть $\[{z_i}\]$ - корень уравнения. Поскольку все корни - вещественные числа, лежащие на одной прямой, и один из них соответствует середине отрезка, соединяющего два других, то $\[{z_1} + {z_2} = 2{z_3}\]$.

Пользуясь этим соотношением и выражениями для корней, получающимися из формулы Кардано, я пытаюсь найти отношение между коэффициентами, но во-первых, это не удаётся сделать, во-вторых, даже если получится найти отношение, то какими методами исследовать случай, когда коэффициенты комплексные?

Кроме того, возникает ещё один вопрос: правда ли, что во всех остальных случаях корни уравнения будут лежать на комплексной плоскости в вершинах правильного треугольника?

 
 
 
 Re: Взаимное расположение корней кубического уравнения
Сообщение26.06.2015, 17:31 
Аватара пользователя
waxwing_slain в сообщении #1031281 писал(а):
Предполагаю, что это возможно лишь в том случае, когда все три корня - вещественные, то есть $\[\frac{{{b^2}}}{4} + \frac{{{a^3}}}{{27}} < 0\]$.

$z^3+z=0$ смотрит на Вас, скептически прищурившись.

 
 
 
 Re: Взаимное расположение корней кубического уравнения
Сообщение26.06.2015, 18:04 
waxwing_slain в сообщении #1031281 писал(а):
$\[\frac{{{b^2}}}{4} + \frac{{{a^3}}}{{27}} < 0\]$
Теперь неплохо бы ещё объяснить, что, собственно, может означать ваше неравенство в случае ваших, напоминаю, комплексных коэффициентов.

 
 
 
 Re: Взаимное расположение корней кубического уравнения
Сообщение26.06.2015, 20:50 
Аватара пользователя
$(z-p)(z-q)(z-p/2-q/2)=0$

 
 
 
 Re: Взаимное расположение корней кубического уравнения
Сообщение28.06.2015, 16:35 
Евгений Машеров
Пусть корни кубического уравнения таковы, что $\[{z_3} = \frac{{{z_1} + {z_2}}}{2}\]$, и пусть $\[\begin{array}{l}
{z_1} = {a_1} + {a_2}i\\
{z_2} = {b_1} + {b_2}i\\
{z_3} = \frac{{{a_1} + {b_1}}}{2} + \frac{{{a_2} + {b_2}}}{2}i
\end{array}\]$
Тогда уравнение можно представить в виде $\[(z - {a_1} - {a_2}i)(z - {b_1} - {b_2}i)(z - \frac{{{a_1} + {b_1}}}{2} - \frac{{{a_2} + {b_2}}}{2}i) = 0\]$
Раскрывая скобки, получим кубическое уравнение, в общем случае с ненулевым коэффициентом при $\[{z^2}\]$.
$\[{z^3} + {c_1}{z^2} + {c_2}z + {c_3} = 0\]$
С помощью замены $\[z = t - \frac{{{c_1}}}{3}\]$ можно получить уравнение с нулевым коэффициентом при $\[{z^2}\]$. Заметим, что если корни таковы, что один из них является серединой отрезка между двумя другими, то после такой замены всегда получается уравнение вида $\[{t^3} + ct = 0\]$.

Теперь ясно, что все пары коэффициентов вида $\[(a,0)\]$, соответствуют уравнению $\[{z^3} + az= 0\]$, для которого верно, что один из корней является серединой отрезка между двумя другими. Следует ли из сказанного, что других пар, для которых это верно, не существует?

Ещё один похожий вопрос: требуется найти пары коэффициентов, при которых корни уравнения $\[{z^3} + az + b = 0\]$ лежат на комплексной плоскости в вершинах правильного треугольника. Ясно, что это верно для всех пар вида $\[(0,b)\]$. Как доказать, что не существует других пар, для которых это верно?

 
 
 
 Re: Взаимное расположение корней кубического уравнения
Сообщение28.06.2015, 16:46 
waxwing_slain в сообщении #1031856 писал(а):
С помощью замены $\[z = t - \frac{{{c_1}}}{3}\]$ можно получить уравнение с нулевым коэффициентом при $\[{z^2}\]$.

Не нужно никаких замен -- Евгений Машеров намекал на теорему Виета: коэффициент при квадрате равен минус сумме корней, откуда $\frac32p+\frac32q=0$, вот и всё.

waxwing_slain в сообщении #1031856 писал(а):
это верно для всех пар вида $\[(0,b)\]$. Как доказать, что не существует других пар, для которых это верно?

А вот тут как раз заменой: сдвигом центр правильного треугольника можно сместить в ноль, после чего для новой переменной останется только куб и свободный член; но тогда обратный сдвиг непременно приведёт к появлению квадрата.

 
 
 
 Re: Взаимное расположение корней кубического уравнения
Сообщение28.06.2015, 17:14 
ewert
Спасибо за ответ. Ясно, что существует замена, которая центр смещает в ноль, но какой именно вид имеет эта замена? И почему обратный сдвиг непременно приведёт к появлению квадрата?

 
 
 
 Re: Взаимное расположение корней кубического уравнения
Сообщение28.06.2015, 17:17 
waxwing_slain в сообщении #1031865 писал(а):
но какой именно вид имеет эта замена?

Сдвиг. Т.е. просто прибавление константы.

 
 
 
 Re: Взаимное расположение корней кубического уравнения
Сообщение28.06.2015, 17:18 
Аватара пользователя
Замены, которые смещают, все имеют один и тот же вид: $z\mapsto{}z+const$.
Про квадрат - выпишите явным образом коэффициенты после сдвига, и увидите.

 
 
 
 Re: Взаимное расположение корней кубического уравнения
Сообщение29.06.2015, 00:43 
Огромное спасибо за ответы! У меня возник ещё один вопрос, связанный с исследованием кубического многочлена.

$\[p(z) = {z^3} + az + b\]$

Пусть для любого комплексного числа $\[z\]$, такого что $\[\left| z \right| = 1\]$, выполнено $\[\left| {p(z)} \right| \le 1\]$. Требуется доказать, что в этом случае $\[a = b = 0\]$

Для того, чтобы это доказать, предположим противное. Пусть $\[a \ne 0\]$ или $\[b \ne 0\]$.

Пусть $\[z = x + iy\]$, по условию $\[\left| z \right| = 1\]$. Тогда $\[\left| x \right| = \sqrt {1 - {y^2}} \]$.

Дальше я выписываю выражения для вещественной и мнимой частей $\[p(z)\]$. Должно выполняться $\[\left| {p(z)} \right| \le 1\]$. С учётом всего сказанного, имеем иррациональное неравенство с двумя параметрами. Требуется доказать, что если оба параметра одновременно не равны нулю, то найдётся такой $\[{y_0} \in \left[ { - 1,1} \right]\]$, что $\[\left| {p(\sqrt {1 - {y_0}^2}  + i{y_0})} \right| > 1\]$. К сожалению, из-за технических трудностей провести доказательство не получается. Может быть можно доказать этот факт проще?

 
 
 
 Re: Взаимное расположение корней кубического уравнения
Сообщение29.06.2015, 10:49 
Докажите, что:

а) на границе $|z^3+az|=|z^2+a|\cdot1>1$ как минимум в двух диаметрально противоположных точках;

б) прибавление $b$ хотя бы в одной из этих точек ситуацию только ухудшит.

 
 
 
 Re: Взаимное расположение корней кубического уравнения
Сообщение29.06.2015, 11:12 
waxwing_slain в сообщении #1031981 писал(а):
Может быть можно доказать этот факт проще?
Да, этот факт доказывается несложно, если его правильно сформулировать. Попробуйте доказать такое утверждение для многочлена $f(z)=z^n+1+h(z)$, где $0<\deg{h(z)}<n$. Если $h(z) \neq 0$, то $|f(\zeta^j)|>2$ для некоторого $j$ и, как следствие, $\max_{|z|=1}{|f(z)|}>2$. Здесь $\zeta=\cos{(2\pi/n)}+i\sin{(2\pi/n)}$ --- первообразный корень из единицы степени $n$.

 
 
 [ Сообщений: 12 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group