2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Спектральные проекторы
Сообщение26.06.2015, 18:29 
Аватара пользователя
Пусть $P_{\lambda}$ и $P_{\mu}$ - спектральные проекторы самосопряженного оператора $A: H \to H$ на замкнутые подпространства $H_{\lambda}$ и $H_{\mu}$ соответственно. Известно, что $\lambda<\mu$, то $P_\lambda \leq P_\mu$. Никак не могу доказать следующее утверждение: $P_{\lambda} \leq P_{\mu} \Leftrightarrow H_{\lambda} \subset H_{\mu}$. Проекторы определяются как предел непрерывного функционального исчисления от монотонных функций, приближающих соответствующий индикатор. Например, для $P_{\mu}$ это индикатор $\mathbf{1}_{(-\infty;\mu]}$. И вроде бы интуитивно понятно, что при $\lambda < \mu$ проектор $P_{\mu}$ должен чаще действовать как тождественный, нежели $P_{\lambda}$, но вот что-то не получается установить формальную связь.

 
 
 
 Re: Спектральные проекторы
Сообщение26.06.2015, 19:25 
а это разве имеет значение, что они проекторы самосопряженного оператора?

Разве утверждение $M\subseteq N\Longleftrightarrow (P_Mx,x)\le (P_Nx,x)$ для любых проекторов неверно? безотносительно операторов, которые из них клеются

 
 
 
 Re: Спектральные проекторы
Сообщение26.06.2015, 21:12 
$M\subseteq N\Longrightarrow\|P_Mx-x\|=\inf_{y\in M}\|x-y\|\ge \inf_{y\in N}\|x-y\|=\|P_Nx-x\| $

-- Пт июн 26, 2015 21:20:51 --

обратно: $\|P_Mx\|^2=(P_Mx,x)\le (P_Nx,x)=\|P_Nx\|^2\Longrightarrow N^\perp\subseteq M^\perp$

 
 
 
 Re: Спектральные проекторы
Сообщение26.06.2015, 23:28 
Аватара пользователя
Oleg Zubelevich в сообщении #1031339 писал(а):
это разве имеет значение, что они проекторы самосопряженного оператора?

Ортогональность проектора существенна. Если $P$ неортогональный проектор то $P\le I$ м.б. и неверным

 
 
 
 Re: Спектральные проекторы
Сообщение26.06.2015, 23:30 
в гильбертоввом пространстве проектор ортогонален по дефолту, если не указано вдоль какого подпространства он проектор

 
 
 
 Re: Спектральные проекторы
Сообщение27.06.2015, 09:06 
Аватара пользователя
Разобрался. Oleg Zubelevich, большое Вам спасибо.

 
 
 
 Re: Спектральные проекторы
Сообщение27.06.2015, 11:37 
Red_Herring в сообщении #1031414 писал(а):
Если $P$ неортогональный проектор то $P\le I$ м.б. и неверным

Проектор не ортогональный -- то же, что не самоспряжённый, а тогда для него неравенство попросту не определено.

 
 
 
 Re: Спектральные проекторы
Сообщение27.06.2015, 13:05 
Аватара пользователя
На самом деле можно найти достаточно приличные источники, в которых положительность не требует симметричности (в комплексном пр-ве симметричность следует автоматически), тем паче самосопряженности. Поэтому оговорка "самосопряженного оператора" в исходной задаче совсем не лишняя.

 
 
 
 Re: Спектральные проекторы
Сообщение27.06.2015, 13:08 
Red_Herring в сообщении #1031550 писал(а):
в комплексном пр-ве симметричность следует автоматически

Так комплексность и подразумевается тоже автоматически, без неё как-то неуютно.

-- Сб июн 27, 2015 14:10:45 --

Red_Herring в сообщении #1031550 писал(а):
Поэтому оговорка "самосопряженного оператора" в исходной задаче совсем не лишняя.

Не лишняя, но несколько избыточная. Дело действительно не в спектральности этих проекторов, а только в их ортогональности.

 
 
 
 Re: Спектральные проекторы
Сообщение27.06.2015, 13:29 
Аватара пользователя
ewert в сообщении #1031551 писал(а):
Так комплексность и подразумевается тоже автоматически, без неё как-то неуютно.

Я тоже люблю комплексные пр-ва, но есть задачи, в которых пр-ва по определению действительны. А то ведь и такие оригиналы случаются
*** сообщении #1031161 писал(а):
Задачу определения собственных чисел оператора энергии и импульса необходимо решать в комплексном трехмерном евклидовом пространстве в случае уравнения Шредингера, рассматривая частный случай одномерного и двумерного пространства, и в четырехмерном комплексном пространстве Минковского в релятивистском случае. Это связано с тем, что задача в действительном евклидовом трехмерном пространстве не решается, возникает комплексное собственное значение. Но пока необходимо ограничиться уравнением Шредингера.

 
 
 
 Re: Спектральные проекторы
Сообщение27.06.2015, 14:56 
Red_Herring в сообщении #1031555 писал(а):
А то ведь и такие оригиналы случаются

Ну товарищ просто не отдаёт себе отчёт в том, что он понимает под словом "пространство". Комплексность же нужна везде, где требуется понятие спектра -- без неё спектра просто не будет.

 
 
 
 Re: Спектральные проекторы
Сообщение27.06.2015, 22:57 
Аватара пользователя
ewert в сообщении #1031572 писал(а):
Комплексность же нужна везде, где требуется понятие спектра -- без неё спектра просто не будет.

Почему? (Или Вы здесь что-то специальное имеете в виду?)

 
 
 
 Re: Спектральные проекторы
Сообщение27.06.2015, 23:00 
AlexDem в сообщении #1031694 писал(а):
Почему?

Потому, что вся эта спектральная теория по существу аналитична. А какая ж аналитичность без комплексности.

 
 
 [ Сообщений: 13 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group