2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 В комплексном случае
Сообщение09.06.2015, 13:05 
Аватара пользователя
Пожалуйста, помогите со следующими вопросами.

1) Справедлива ли для комплексных функций (из $\mathbb{C}$ в $\mathbb{C}$) формула Тейлора с остаточным членом в интегральной форме?

2) Справедлива ли для комплексных функций теорема Фубини или какой-либо её аналог о перестановке интегралов?

3) Вводится ли понятие производной Фреше для нелинейных операторов в комплексных банаховых пространствах?

Понимаю, что вопросы простые и скорее всего ответ утвердительный на все три, но не могу найти литературу, где бы это излагалось. Везде требуется, чтобы функции или пространства были вещественные. Буду очень рад, если кто-нибудь даст ссылку на литературу хотя бы по одному из этих пунктов.

 
 
 
 Re: В комплексном случае
Сообщение09.06.2015, 15:28 
Mikhail_K
1) Да.
2) Дело не в функции, а в переменной интегрирования.
3) Не знаю. Думаю, нет.

 
 
 
 Re: В комплексном случае
Сообщение09.06.2015, 15:52 
Mikhail_K в сообщении #1025229 писал(а):
3) Вводится ли понятие производной Фреше для нелинейных операторов в комплексных банаховых пространствах?

Да, конечно. Да и так видно, что препятствий нет никаких. Более того, при желании можно определить голоморфность в таких пространствах.

Из достаточно старых источников, помнится, было у Хилле - Иосиды, поновее чего, увы, не назову, давно в ту степь не лазила.

 
 
 
 Re: В комплексном случае
Сообщение09.06.2015, 16:39 
Аватара пользователя
DiMath, мне бы ссылку на литературу, где приводится и доказывается формула Тейлора с интегральным остаточным членом для комплексных функций.

И про переменную интегрирования в пункте 2 - можно подробнее?

 
 
 
 Re: В комплексном случае
Сообщение09.06.2015, 17:40 
Mikhail_K в сообщении #1025288 писал(а):
где приводится и доказывается формула Тейлора с интегральным остаточным членом для комплексных функций.

Зачем Вам ссылка, на такое не ссылаются. Результат очевидно воспроизводится прямым переносом с вещественного случая. Единственно, что нужно, - чтобы интеграл такого сорта, как в остаточном члене, был определен однозначно, то есть не зависел от пути интегрирования. Для этого за глаза хватит аналитичности функции в некотором круге, содержащем концы отрезка интегрирования.
Mikhail_K в сообщении #1025288 писал(а):
И про переменную интегрирования в пункте 2 - можно подробнее?

Вы лучше напишите, какого вида интегралы Вы переставляете. Фубини тут явно ни при чем.

 
 
 
 Re: В комплексном случае
Сообщение09.06.2015, 19:05 
Аватара пользователя
Otta в сообщении #1025307 писал(а):
Вы лучше напишите, какого вида интегралы Вы переставляете. Фубини тут явно ни при чем.

Сформулирую так.
При каких наиболее общих условиях на контуры $\Gamma_1$, $\Gamma_2$ (хотелось бы, чтобы допускались очень плохие, например несвязные и состоящие из счётного множества связных контуров, из которых некоторые замкнутые, а некоторые уходят в бесконечность) и на функцию $f$ справедливо равенство
$$
\int\limits_{\Gamma_1} \biggl( \int\limits_{\Gamma_2} f(z_1,z_2) dz_2 \biggr) dz_1 = \int\limits_{\Gamma_2} \biggl( \int\limits_{\Gamma_1} f(z_1,z_2) dz_1 \biggr) dz_2?
$$

(интеграл по контуру из счётного множества подконтуров понимается как сумма соответствующего ряда из интегралов по этим контурам... ладно, если это я слишком загнул, пусть будут контуры получше. Мне надо знать как можно более общие условия, при которых равенство верно.)

Спасибо за ответы выше!

 
 
 
 Re: В комплексном случае
Сообщение09.06.2015, 19:43 
Mikhail_K в сообщении #1025341 писал(а):
При каких наиболее общих условиях на контуры $\Gamma_1$, $\Gamma_2$

Грубо говоря, ни при каких. В том смысле, что в содержательных случаях эти интегралы именно что не совпадают, и вот как раз разница между ними практически и важна. А когда её нет -- так это тривиально и никому не нужно.

Mikhail_K в сообщении #1025229 писал(а):
3) Вводится ли понятие производной Фреше для нелинейных операторов в комплексных банаховых пространствах?

Более того: только она там чаще всего и вводится, комплексность ей безразлична.

 
 
 
 Re: В комплексном случае
Сообщение09.06.2015, 19:47 
Аватара пользователя
Цитата:
Грубо говоря, ни при каких. В том смысле, что в содержательных случаях эти интегралы именно что не совпадают, и вот как раз разница между ними практически и важна. А когда её нет -- так это тривиально и никому не нужно.

Это для меня новость... опять же, где можно об этом прочитать?
Ну, не только про факт несовпадения, хотелось бы что-то конструктивное всё-таки..

-- 09.06.2015, 20:19 --

Кто-нибудь скажите мне, ewert говорит правду или лжёт? Где это написано?
Вот передо мной статьи уважаемых авторов, опубликованные в ВАКовском журнале. Там есть фраза насчёт повторных интегралов, таких как я привёл выше: интеграл абсолютно сходится, поэтому изменим порядок интегрирования. Я поэтому и вспомнил про Фубини. Фраза эта встречается не раз и не два.

 
 
 
 Re: В комплексном случае
Сообщение09.06.2015, 21:01 
Mikhail_K Вы ставите под сомнения слова заслуженного участника? :D
Если речь про несобственный интеграл, который еще и абсолютно сходится.. По хорошему, Вам нужна абсолютная сходимость обеих интегралов, тогда Вы можете изменить порядок интегрирования. Но это к Вашему вопросу никакого отношения не имеет. Теорема Фубини говорит о переходе от кратного интеграла к повторному.
В конце-то концов, сведите Ваш интеграл к интегралу второго рода, и получите два интеграла (от вещественной и мнимой части), каждый из них будет от вещественной функции.

 
 
 
 Re: В комплексном случае
Сообщение09.06.2015, 21:04 
Аватара пользователя
Почему же не имеет?
При каких условиях я могу менять местами два комплексных интеграла?
Разумеется, эти комплексные интегралы могут быть (или не быть) несобственными (т.е. по бесконечным контурам) и абсолютно сходящимися. Вот я и спрашиваю: при каких условиях?

 
 
 
 Re: В комплексном случае
Сообщение09.06.2015, 21:08 
Mikhail_K Ага.
Что Вы понимаете, под "комплексным" интегралов?

 
 
 
 Re: В комплексном случае
Сообщение09.06.2015, 21:40 
Аватара пользователя

(Mikhail_K)

Mikhail_K в сообщении #1025359 писал(а):
Кто-нибудь скажите мне, ewert говорит правду или лжёт?
Есть такая штука как дипломатия (одно из значений по Викисловарю — «избегание прямых столкновений при достижении собственных целей»). Например, Вы можете спросить ewerta: «А как относиться к таким-то словам уважаемых авторов в солидном журнале?» Конечно, можно сказать и «Вы лжец!», но пользы от такого стиля будет меньше. Обычно ewert говорит полезные вещи. Разумеется, он может ошибаться, как и любой другой человек.

 
 
 
 Re: В комплексном случае
Сообщение09.06.2015, 21:48 
Аватара пользователя
Mikhail_K
Одной теоремы на все случаи жизни жизни здесь не сформулируешь. Напишите конкретные интегралы и мы постараемся помочь.

 
 
 
 Re: В комплексном случае
Сообщение09.06.2015, 22:19 
Аватара пользователя
ewert, svv, сто раз меня извините, если я кого-нибудь здесь задел. Ну такой у меня стиль разговора. Кстати, лжецом я никого не назвал. Но мне интересно разобраться в вопросе.
DiMath, под "комплексными" интегралами я понимаю то, что написал выше. Интегралы от комплекснозначных функций комплексного аргумента по контурам на комплексной плоскости.

-- 09.06.2015, 22:21 --

ex-math, ну хоть какие-нибудь теоремы, пусть не на все случаи жизни. О перестановке порядка интегрирования в повторных интегралах от комплексных функций по контурам на комплексной плоскости.

 
 
 
 Re: В комплексном случае
Сообщение09.06.2015, 22:32 
Mikhail_K в сообщении #1025359 писал(а):
интеграл абсолютно сходится, поэтому изменим порядок интегрирования.

В "комплексной области" абсолютная сходимость криволинейных интегралов интересна крайне редко. Зато крайне интересно, какие особые точки попадают внутрь контура, а какие нет. И вот тут-то перестановка контуров и бывает принципиальной.

 
 
 [ Сообщений: 21 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group