2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Дополнить до базиса
Сообщение21.05.2015, 19:36 
Дана система векторов: $a_1=(2,2,7,-1); a_2=(3,-1,2,4); a_3=(1,1,3,1)$. Нужно дополнить до базиса.
Я рассуждал так: канонический базис понятно какой. Нужно из него выбрать вектор, который не принадлежит линейной оболочке этой системы. Составим матрицу, где четвертым столбцом будет подставлять вектор из канонического базиса. Как только определитель не нулевой, значит матрица полного ранга, готов.

Но они все получились не нулевые! :shock: :shock: :shock:

 
 
 
 Re: Дополнить до базиса
Сообщение21.05.2015, 19:43 
Ну и выбирайте любой. :shock:

 
 
 
 Re: Дополнить до базиса
Сообщение21.05.2015, 19:45 
Аватара пользователя
2old в сообщении #1018197 писал(а):
Но они все получились не нулевые!

А если бы я сгенерировал случайные координаты для 100 четвёртых векторов и все эти 100 векторов оказались бы дополняющими до базиса, Вас бы это удивило больше или меньше?

 
 
 
 Re: Дополнить до базиса
Сообщение21.05.2015, 19:47 
arseniiv
Так если у исходной системы ранг 3, разве какие-то три из $(1,0,0,0)\dots(0,0,0,1)$ не должны ей принадлежать? А тут выходят все не принадлежат.

-- 21.05.2015, 20:48 --

grizzly
Меньше, так как есть шанс что все они из одного подпространства размерности 1

 
 
 
 Re: Дополнить до базиса
Сообщение21.05.2015, 19:54 
2old в сообщении #1018204 писал(а):
Так если у исходной системы ранг 3, разве какие-то три из $(1,0,0,0)\dots(0,0,0,1)$ не должны ей принадлежать?
А почему вы так считаете?

2old в сообщении #1018204 писал(а):
Меньше, так как есть шанс что все они из одного подпространства размерности 1
Если генерировать аккуратно, этот шанс будет независимо от количества векторов нулевой. :wink: (Ну, если только векторное пространство не конечно…)

-- Чт май 21, 2015 21:56:39 --

Кстати, посмотрите на трёхмерную аналогичную задачу (тут можно подключить глаза). Вот есть плоскость, натянутая на два каких-то вектора. Ничто не мешает трём не лежащим в ней векторам оказываться базисом пространства.

 
 
 
 Re: Дополнить до базиса
Сообщение21.05.2015, 20:10 
Аватара пользователя
2old
У Вас произошёл сбой в интуитивном понимании простых вещей и это важно срочно исправить.

 
 
 
 Re: Дополнить до базиса
Сообщение21.05.2015, 20:17 
2old в сообщении #1018197 писал(а):
Дана система векторов: $a_1=(2,2,7,-1); a_2=(3,-1,2,4); a_3=(1,1,3,1)$. Нужно дополнить до базиса.
:twisted: Выбирайте $a_4=(\pi,\pi^2,\pi^3,\pi^4)$ - не ошибётесь. (Если, конечно, Вашу систему можно вообще дополнить до базиса.) :lol:

 
 
 
 Re: Дополнить до базиса
Сообщение21.05.2015, 20:21 
Да, как-то я запутался. Но сейчас порисовал, вроде понял. Пространства они больше, чем я думал)))
Надеюсь, порешаю задачки на подпространства и интуиция улучшится.

 
 
 
 Re: Дополнить до базиса
Сообщение22.05.2015, 05:34 
2old в сообщении #1018197 писал(а):
Составим матрицу, где четвертым столбцом будет подставлять вектор из канонического базиса. Как только определитель не нулевой, значит матрица полного ранга, готов.


Извините, но это же решение подбором. А если бы в условии было требование, чтобы $a_4$ был перпендикулярен всем предыдущим $a_i$, сможете придумать алгоритм нахождения $a_4$ ? Не получится ли так, что по этому алгоритму действий надо в среднем меньше, чем то количество, что вы сделали?

 
 
 
 Re: Дополнить до базиса
Сообщение22.05.2015, 08:10 
Аватара пользователя
ET в сообщении #1018278 писал(а):
А если бы в условии было требование, чтобы $a_4$ был перпендикулярен всем предыдущим $a_i$, сможете придумать алгоритм нахождения $a_4$ ?

Откуда дровишки Евклидова структура в "обычном" линейном пространстве? :shock:

 
 
 
 Re: Дополнить до базиса
Сообщение22.05.2015, 08:15 
Brukvalub
Вы про перпендикулярность-ортогональность? Ну легко же вводится в данном случае.

 
 
 
 Re: Дополнить до базиса
Сообщение22.05.2015, 11:03 
Ну, некое эстетство, конечно, требовать решения непременно в терминах задачи, без введения новых понятий. С другой стороны, отвечать, к примеру, пятикласснику на вопрос о площади прямоугольного треугольника, рисуя оси вдоль катетов и вводя (тоже не слишком-то сложное) понятие определённого интеграла — перебор-с.

 
 
 
 Re: Дополнить до базиса
Сообщение22.05.2015, 15:57 
Аватара пользователя
Давайте тогда найдём компромисс. Составим систему $Ax=0$, где каждая $i$-я строка матрицы $A$ — это $a_i^T$. Пространство её решений будет прямым дополнением $\operatorname{span}\{a_i\}$ до всего пространства. А про скалярное произведение ничего не будем говорить.

 
 
 [ Сообщений: 13 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group