2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4  След.
 
 Транспонировать таблицу Кэли
Сообщение25.04.2015, 18:30 
Я не совсем понимаю разницу между умножением слева и умножением справа, хотелось бы это уточнить.
Изображение
На картинке изображена таблица Кэли для группы симметрий правильного треугольника. Если же заглянуть в Википедию, можно увидеть такую же таблицу, но 'перевёрнутую'. Либо нужно признать, что существуют две различные неабелевы группы порядка 6 (что невозможно), либо установить, что группы изоморфны. Вопрос в том, как найти изоморфизм. Должно быть что-то вроде $t(a)\cdot t(b)=ba$, разве нет?

 
 
 
 Re: Транспонировать таблицу Кэли
Сообщение25.04.2015, 18:37 
Kras в сообщении #1007901 писал(а):
Должно быть что-то вроде $t(a)\cdot t(b)=ba$, разве нет?
Ну, например.

 
 
 
 Re: Транспонировать таблицу Кэли
Сообщение25.04.2015, 18:52 
Тогда по формуле получается $t(e)\cdot t(e)=ee=e$. Отсюда следует, что $t(e)=e$. Далее $t(a)\cdot t(e)=ea=a$, и $t(a)=a$. То есть мы имеем отображение каждого элемента в себя, в частности $t(ab)=ab$. Я запутался, подскажите в чём тут дело, если не трудно.

 
 
 
 Re: Транспонировать таблицу Кэли
Сообщение25.04.2015, 18:54 
Аватара пользователя
Kras в сообщении #1007910 писал(а):
Я запутался, подскажите в чём тут дело, если не трудно.

Какие унарные операции над матрицами переставляют порядок умножения?

 
 
 
 Re: Транспонировать таблицу Кэли
Сообщение25.04.2015, 18:58 

(Оффтоп)

Я например не смогу даже ответить что такое матрица, поскольку имею об этом смутное представление.

Перемена ролями строк и столбцов в таблице Кэли должна менять порядок умножения.

 
 
 
 Re: Транспонировать таблицу Кэли
Сообщение25.04.2015, 20:02 
Аватара пользователя
Kras в сообщении #1007912 писал(а):

(Оффтоп)

Я например не смогу даже ответить что такое матрица, поскольку имею об этом смутное представление.

Перемена ролями строк и столбцов в таблице Кэли должна менять порядок умножения.


ОК, транспонирование. Поэтому никаких проблем: эта штука единственна с точностью до изоморфизма.

 
 
 
 Re: Транспонировать таблицу Кэли
Сообщение25.04.2015, 20:14 
Я по прежнему не понимаю суть. Тут должна быть какая-то общая теорема, в которой утверждается, что если для любых $a,b\in G$ и для любых $t_{a},t_{b}\in T$ справедливо, что $t_{a}\cdot t_{b}=ba$, то группы $G$ и $T$ изоморфны. Я не представляю с чего тут начать доказательство.

 
 
 
 Re: Транспонировать таблицу Кэли
Сообщение25.04.2015, 20:22 
Kras, если в группе $(G,\cdot)$ задана еще одна операция $a\circ b=b\cdot a$, то $a\rightarrow a^{-1}$ - это изоморфизм $(G,\cdot)$ и $(G,\circ)$. Можете попробовать проверить это. (Надеюсь, что правильно понял Ваш вопрос.)

 
 
 
 Re: Транспонировать таблицу Кэли
Сообщение25.04.2015, 20:23 
Аватара пользователя
Да нет, Kras, если $t_{a}\cdot t_{b}=a*b$, где операции в группах $\cdot$ и $*$ соответственно. Ну вот если у нас есть группы $G$ и $T$, совпадающие как множества, но с разными операциями $a*b$ и $a\cdot b= b*a$, то отображение $a\mapsto t(a)= a^T$ и осуществляет такой изоморфизм.

 
 
 
 Re: Транспонировать таблицу Кэли
Сообщение25.04.2015, 20:51 
Аватара пользователя
Kras в сообщении #1007901 писал(а):
Должно быть что-то вроде $t(a)\cdot t(b)=ba$, разве нет?

$t(ab) = t(b)t(a)$ скорее.

 
 
 
 Re: Транспонировать таблицу Кэли
Сообщение25.04.2015, 23:16 
Всем спасибо за ответы.
patzer2097 в сообщении #1007932 писал(а):
$a\circ b=b\cdot a$, то $a\rightarrow a^{-1}$ - это изоморфизм $(G,\cdot)$ и $(G,\circ)$. Можете попробовать проверить

Изоморфизмом будет отображение $\varphi$ такое, что $\varphi (a\circ b)=\varphi (a)\cdot\varphi (b)$. Действительно, $(a\circ b)^{-1}=b^{-1}\circ a^{-1}=a^{-1}\cdot b^{-1}$. Значит если заменить все элементы на обратные и для них построить новую таблицу Кэли, то она будет транспонированной относительно исходной...
Red_Herring в сообщении #1007933 писал(а):
Ну вот если у нас есть группы $G$ и $T$, совпадающие как множества, но с разными операциями $a*b$ и $a\cdot b= b*a$, то отображение $a\mapsto t(a)= a^T$ и осуществляет такой изоморфизм

$a^T$ это $a^{-1}$?

 
 
 
 Re: Транспонировать таблицу Кэли
Сообщение25.04.2015, 23:34 
Аватара пользователя
Kras в сообщении #1008000 писал(а):
$a^T$ это $a^{-1}$?

Транспонированная матрица. которая может совпадать с обратной (проверить).

 
 
 
 Re: Транспонировать таблицу Кэли
Сообщение26.04.2015, 00:17 

(Особо не читал и потому, возможно, невпопад.)

Не проще ли сразу было заметить факт, что одной группе соответствует [не одна, а] множество таблиц Кэли, получаемых друг из друга композицией преобразований с параметрами $(m,n)$, заключающихся в обмене пары строк с индексами $(m,n)$ и пары столбцов с такими же индексами?

 
 
 
 Re: Транспонировать таблицу Кэли
Сообщение26.04.2015, 09:04 
Red_Herring
Я не знаю, что такое обратная матрица.
Red_Herring в сообщении #1007933 писал(а):
Да нет, Kras, если $t_{a}\cdot t_{b}=a*b$, где операции в группах $\cdot$ и $*$ соответственно. Ну вот если у нас есть группы $G$ и $T$, совпадающие как множества, но с разными операциями $a*b$ и $a\cdot b= b*a$, то отображение $a\mapsto t(a)= a^T$ и осуществляет такой изоморфизм.

Итак, существуют по сути две разные группы. Элементы группы с операцией $\cdot$ мы будем обозначать маленькими буквами, элементы группы с операцией $*$ - большими. Речь идёт о том, что имеется функция $a\stackrel{t}{\longrightarrow}A$, при этом $a\cdot b= B*A$, где $a,b,A,B$ - произвольные элементы соответствующих групп. Как теперь доказать, что $a\cdot b\stackrel{t}{\longrightarrow}A*B$ ?

 
 
 
 Re: Транспонировать таблицу Кэли
Сообщение26.04.2015, 13:13 
Аватара пользователя
Kras в сообщении #1008132 писал(а):
Я не знаю, что такое обратная матрица.

Так какого рожна вместо того чтобы учить базисные и широко используемые вещи Вы занимаетесь в общем-то специальными? Это извращение… хотя и ненаказуемое, но и неодобряемое.

 
 
 [ Сообщений: 59 ]  На страницу 1, 2, 3, 4  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group