2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Нахождение экстремумов функции нескольких переменных
Сообщение22.04.2015, 22:03 
Объясните пожалуйста найти точки экстремума в случае функции трёх переменных. Как узнать, является точка точкой экстремума в случае функции трёх переменных? Я так понимаю нужно найти частные производные и приравнять их к нулю, затем найти производные второго порядка,то есть так же как и в случае функции двух переменных, а вот что делать дальше, как составить матрицу если переменных три, а не две?
Вот допустим формула:
$u=x^2+y^2+z^2+2x+4y-6z$
Находим частные производные первого порядка
$\frac{\partial u}{\partial x}=2x+2$
$\frac{\partial u}{\partial y}=2y+4$
$\frac{\partial u}{\partial z}=2z-6$
найдя и приравняв её частные производные получилась точка $\left\lbrace-1,-2,3\right\rbrace$
найдя её производные второго порядка получилось что её смешанные производные равны нулю, а не смешанные производные все равны двум. Я так понимаю нужно составить матрицу Гессе, в случае если функция является функцией трёх и более переменных? Её определитель тоже, как и в случае функции двух переменных должен быть больше нуля? Как определять, является эта точка точкой минимума или максимума?

 
 
 
 Re: Нахождение экстремумов функции нескольких переменных
Сообщение22.04.2015, 22:07 
Аватара пользователя
Просто матрица будет три на три, в остальном составляете так же.
Для исследования пригодится критерий Сильвестра.

 
 
 
 Posted automatically
Сообщение22.04.2015, 22:08 
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
по следующим причинам:

- неправильно набраны формулы (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы);

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Posted automatically
Сообщение27.04.2015, 16:47 
Аватара пользователя
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»
Возвращено

 
 
 
 Re: Нахождение экстремумов функции нескольких переменных
Сообщение27.04.2015, 18:06 
Aiyyaa в сообщении #1006931 писал(а):
Как определять, является эта точка точкой минимума или максимума?

Она им будет, если матрица Гессе, соответственно, положительно определённая или отрицательно определённая. Способов исследования приблизительно три.

1). Найти собственные числа и посмотреть на их знаки. Но это, начиная с трёх переменных, скорее в теории.

2). Составить квадратичную форму этой матрицы и как-нибудь привести её к диагональному виду -- например, выделением полных квадратов.

3). Применить (т.е. попытаться применить) к матрице критерий Сильвестра.

 
 
 
 Re: Нахождение экстремумов функции нескольких переменных
Сообщение27.04.2015, 19:42 
Аватара пользователя
Aiyyaa в сообщении #1006931 писал(а):
Вот допустим формула:
$u=x^2+y^2+z^2+2x+4y-6z$

В конкретном данном случае для начала интуиция должна чего-то подсказать.

 
 
 
 Re: Нахождение экстремумов функции нескольких переменных
Сообщение27.04.2015, 19:53 
Аватара пользователя
А чё, полные квадраты уже не канают? :shock:

 
 
 
 Re: Нахождение экстремумов функции нескольких переменных
Сообщение27.04.2015, 20:16 
Полные канают, а вот неполные нет - надо же материал восьмого класса знать, чтобы выделить!

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group