2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Школьная задача на проценты, банки.
Сообщение04.04.2015, 01:42 
Алексей взял кредит в банке на срок $12$ месяцев. По договору Алексей должен вернуть кредит ежемесячными платежами. В конце каждого месяца к оставшейся сумме долга добавляется $r$ этой суммы и своим ежемесячным платежом Алексей погашает эти добавленные проценты и уменьшает сумму долга. Ежемесячные платежи подбираются так, чтобы долг уменьшался на одну и ту же величину каждый месяц (на практике такая схема называется «схемой с дифференцированными платежами»). Известно, что общая сумма, выплаченная Алексеем банку за весь срок кредитования, оказалась на $13$ % больше, чем сумма, взятая им в кредит. Найдите $r$.

Пусть Алексей взял сумму $12x$ в кредит. Тогда, он каждый месяц платит $r$% и уменьшает сумму долга на $x$. Пусть $k=0,01r$

Первый платеж.
Надбавили $r$%, получили сумму $12x(1+k)$. Выплатил Алексей в этом месяце $12kx+x=12k(x+1)$.
Оставшаяся сумма долга $12x(1+k)-12k(x+1)=12x-12k=12(x-k)$

Второй платеж.
Надбавили $r$%, получили сумму $12(x-k)(1+k)$. Выплатил Алексей в этом месяце $12(x-k)k+x$.
Оставшаяся сумма долга $12(x-k)(1+k)-12(x-k)k-x =12(x-k)(1+k-k)-x=12(x-k)-x=11x-12k$

Третий платеж.
Надбавили $r$%, получили сумму $(11x-12k)(1+k)$. Выплатил Алексей в этом месяце $(11x-12k)k+x$.
Оставшаяся сумма долга $(11x-12k)(1+k)-(11x-12k)k-x=11x-12k-x=10x-12k$

Четвертый платеж.
Надбавили $r$%, получили сумму $(10x-12k)(1+k)$. Выплатил Алексей в этом месяце $(10x-12k)k+x$.
Оставшаяся сумма долга $9x-12k$

Одиннадцатый платеж.
Надбавили $r$%, получили сумму $(2x-12k)(1+k)$. Выплатил Алексей в этом месяце $(2x-12k)k+x$.
Оставшаяся сумма долга $x-12k$

Двенадцатый платеж.
Надбавили $r$%, получили сумму $(x-12k)(1+k)$. Выплатил Алексей в этом месяце $(x-12k)k+x$.
Оставшаяся сумма долга $0\cdot x-12k$

Что-то не сходится, где тут может быть ошибка?

 
 
 
 Re: Школьная задача на проценты, банки.
Сообщение04.04.2015, 03:40 
karandash_oleg в сообщении #999841 писал(а):
$12kx+x=12k(x+1)$
:roll:

 
 
 
 Re: Школьная задача на проценты, банки.
Сообщение04.04.2015, 14:40 
Спасибо, понятно, обсчитался!
Мне не очень понятен смысл этой фразы (она кажется двусмысленной):
Ежемесячные платежи подбираются так, чтобы долг уменьшался на одну и ту же величину каждый месяц.
В слове долг заключены уже проценты или же это касается только тех денег, что он взял?
То есть какая из этих ситуаций?
На примере дяди Васи. Вася взял кредит на $100 000$ на 10 месяцев. Каждый месяц начиляют ему $1$% на сумму долга.
1) Первый вариант. За первый месяц Вася должен от процентов $1000$ рублей + $10 000$ ежемесячный платеж.
За второй месяц от процентов $890$ рублей + $10 000$ ежемесячный платеж итп
2) Второй вариант. У Васи фиксированный платеж каждый месяц $x$ рублей, куда уже включены проценты.

Если первый вариант, то будет так, правильно?

Пусть $S$ сумма, которую Алексей взял в кредит. $x$ -- фиксированный платеж.Тогда:

$$((((((((((y(1+k)-x)k-x)k-x)k-x)k-x)k-x)k-x)k-x)k-x)k-x)k-x)k-x=0$$

$y\cdot 1,13=12x$

Тогда $y=\dfrac{12x}{1,13}$,

$$((((((((((\dfrac{12x}{1,13}(1+k)-x)k-x)k-x)k-x)k-x)k-x)k-x)k-x)k-x)k-x)k-x)k-x=0$$

Ни умоляя общности, можно взять $x=10 000$ и отсюда найти $k$, верно? Есть ли способ проще? Или все-таки второй вариант верен?

 
 
 
 Re: Школьная задача на проценты, банки.
Сообщение04.04.2015, 15:12 
Шо ви такое пишете?
karandash_oleg в сообщении #999841 писал(а):
Ежемесячные платежи подбираются так, чтобы долг уменьшался на одну и ту же величину каждый месяц (на практике такая схема называется «схемой с дифференцированными платежами»
При чём тут фиксированный платёж? И зачем такие формулы? Напишите ж таки, сколько ваш Андрей, чтоб он был здоров, заплатит за первый месяц и сколько долга останется?
karandash_oleg в сообщении #999947 писал(а):
Ни умоляя
«Не умаляя», боже ж мой! Вы рвёте мне сердце.

 
 
 
 Re: Школьная задача на проценты, банки.
Сообщение04.04.2015, 15:31 
$y$ -- сумма кредита. $x$ -- уменьшение суммы долга ежемесячное (то, что каждый месяц одно и тоже). $k=0,01r$

За первый месяц заплатит $yk+x$, останется $y(1+k)-yk-x=y-x$, если рассматривать первый вариант.
За первый месяц заплатит $x$, останется $y(1+k)-x=y+ky-x$, если рассматривать первый вариант.

Какой же из этих вариантов -- правильный?

 
 
 
 Re: Школьная задача на проценты, банки.
Сообщение04.04.2015, 16:54 
karandash_oleg в сообщении #999967 писал(а):
Какой же из этих вариантов -- правильный?
Честное слово, у вас написано достаточно ясно:
karandash_oleg в сообщении #999841 писал(а):
Ежемесячные платежи подбираются так, чтобы долг уменьшался на одну и ту же величину каждый месяц (на практике такая схема называется «схемой с дифференцированными платежами»)
karandash_oleg в сообщении #999967 писал(а):
За первый месяц заплатит $yk+x$, останется $y-x$
Вот и выпишите за 12 месяцев.

 
 
 
 Re: Школьная задача на проценты, банки.
Сообщение04.04.2015, 17:56 
А что подразумевать под словом долг. В долг включены проценты? Можно включать, а можно и не включать, в этом двусмысленность.

За второй месяц заплатит $(y-x)k+x$, останется $y-x-(y-x)k-x=(y-x)(1-k)-x$

За третий месяц заплатит $((y-x)(1-k)-x)k-x$, останется $(y-x)(1-k)-x-((y-x)(1-k)-x)k-x=((y-x)(1-k)-x)(1-k)$

Верно? Так и продолжать?

-- 04.04.2015, 18:16 --

А, все ясно стало, при первом варианте получилось $r=2$%.

 
 
 
 Re: Школьная задача на проценты, банки.
Сообщение05.04.2015, 01:46 
karandash_oleg в сообщении #1000029 писал(а):
За второй месяц заплатит $(y-x)k+x$, останется $y-x-(y-x)k-x=(y-x)(1-k)-x$
Нет.

 
 
 
 Re: Школьная задача на проценты, банки.
Сообщение12.07.2018, 15:26 
Перемудрёно. Все гораздо проще.

Долг по месяцам $\quad$$ \quad\;12S, 11S, ..., 2S, S.$
Проценты по долгу $\quad$$ \quad\;\frac{rS}{100}(12+11+ ... + 2+1)= \frac{78rS}{100}=0,13\cdot 12S$.
Стало быть, $\quad$$r = 2$.

 
 
 [ Сообщений: 9 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group