2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Задача по дифференциальной геометрии 2-поверхностей
Сообщение05.06.2015, 23:29 
Задача.

Пусть есть поверхность $r(u, v)$, в каждой её точке известны кривизны $K(X)$ и $H(X)$ (гауссова кривизна и средняя кривизна). Рассмотрим поверхность $r_1 (u, v) = r(u, v) + a \cdot n(u, v)$, где $n(u, v) = \frac{r_u \times r_v}{\mid r_u \times r_v \mid}$ - вектор нормали, $a$ - константа. Нужно выразить гауссовы и среднюю кривизны второй поверхности (сдвинутой на нормаль) через эти же кривизны исходной поверхности.

Что я попытался сделать. Вычислить первую и вторую квадратичные формы второй поверхности, частные производные нормали вычисляя по правилу Лейбница (которое верно для векторного произведения), потом пытался как-то скомбинировать матрицы этих форм, чтобы вычленить из них кривизны, но получаются очень сложные выражения, выделить кривизны исходной поверхности в них не удаётся.

Буду рад любым идеям по поводу этой задачи, возможно я неправильно начал её решать, но других идей пока у меня вообще нет. Вычислял это для исходной поверхности - 2-сферы, частный случай, но как результат обобщить на произвольную поверхность пока понять не удалось.

 
 
 
 Re: Задача по дифференциальной геометрии 2-поверхностей
Сообщение06.06.2015, 00:42 
Аватара пользователя
Я напишу в своих обозначениях (но Вас это ни к чему не обязывает).
$\mathbf{\bar r}=\mathbf r+a\mathbf n$
Отсюда
$\mathbf n\cdot\mathbf {\bar r}_u=\mathbf n\cdot\mathbf r_u+a\mathbf n\cdot\mathbf n_u$
$\mathbf n\cdot\mathbf {\bar r}_v=\mathbf n\cdot\mathbf r_v+a\mathbf n\cdot\mathbf n_v$
В правой части первые слагаемые равны нулю, так как $\mathbf n\perp\mathbf r_u$ и $\mathbf n\perp\mathbf r_v$, а вторые равны нулю, потому что производная $\mathbf n\cdot\mathbf n=1$ по $u$ или $v$ равна нулю.
Следовательно, для соответствующих друг другу точек $\mathbf{\bar r}(u, v)$ и $\mathbf{r}(u, v)$ нормаль общая:
$\mathbf{\bar n}(u, v)=\mathbf{n}(u, v)$.
Следовательно, $\mathbf{\bar n}_u=\mathbf{n}_u$ и $\mathbf{\bar n}_v=\mathbf{n}_v$.

Так как
$\mathbf n_u\cdot\mathbf n=\mathbf r_u\cdot\mathbf n=\mathbf r_v\cdot\mathbf n=0$,
вектор $\mathbf n_u$ (и аналогично $\mathbf n_v$) является линейной комбинацией $\mathbf r_u$ и $\mathbf r_v$, и можно попытаться найти коэффициенты разложения.

Но это только начало, а всё решение всё равно получается громоздкое, в одном из известных задачников оно «размазано» по трём или четырём задачам.

 
 
 
 Re: Задача по дифференциальной геометрии 2-поверхностей
Сообщение06.06.2015, 12:33 
Аватара пользователя
Для начала запишите деривационные уравнения в общей форме. Потом присмотритесь к производным нормали. С учётом совпадения нормалей для старой и новой поверхностей можно сразу получить некоторое соотношение на вторые квадратичные формы.

 
 
 
 Re: Задача по дифференциальной геометрии 2-поверхностей
Сообщение06.06.2015, 13:39 
Утундрий в сообщении #1023927 писал(а):
Для начала запишите деривационные уравнения в общей форме. Потом присмотритесь к производным нормали. С учётом совпадения нормалей для старой и новой поверхностей можно сразу получить некоторое соотношение на вторые квадратичные формы.


Деривационные уравнения записал, далее использовал тот факт, что $r_1, r_2, n$ составляют базис, и выделил коэффициенты разложения при нормали $n$ (индексами $1, 2$ тут обозначена частная производная по $u, v$). Из этих равенств получается следующее соотношение на вторую квадратичную форму:

$\widetilde{b_{ij}} = b_{ij} + a \cdot <n_{ij}, n>$

дифференцируя равенство $<n_i, n> = 0$, скалярное произведение $<n_{ij}, n>$ можно переписать как $-<n_i, n_j> = -I(n_i, n_j)$, откуда:

$\widetilde{b_{ij}} = b_{ij} - a \cdot I(n_i, n_j)$

таким образом, вторая квадратичная форма сдвинутой поверхности есть $II - a \cdot I_1$, где $I_1$ - матрица первой квадратичной формы исходной поверхности, но взятая в другом базисе: $n_1, n_2$. Если бы была в том же базисе, было бы очень хорошо, но получилось в базисе, состоящем из производных вектора нормали.

Как можно проанализировать длины $n_1, n_2$ ? Или может лучше как-то попытаться изучить напрямую $<n_{ij}, n>$ ?

Фактически нужно как-то вычислить производные нормали и найти коэффициент их разложения при $n$.

 
 
 
 Re: Задача по дифференциальной геометрии 2-поверхностей
Сообщение06.06.2015, 16:36 
Аватара пользователя
У вас любопытная нотация. Если бы я уже не решил задачу в стандартных тензорных обозначениях, то вообще не понял бы о чём у вас идёт речь. Забудьте о дважды ковариантной $b$, вам нужны смешанные компоненты.

 
 
 
 Re: Задача по дифференциальной геометрии 2-поверхностей
Сообщение08.06.2015, 10:25 
Утундрий в сообщении #1024002 писал(а):
У вас любопытная нотация. Если бы я уже не решил задачу в стандартных тензорных обозначениях, то вообще не понял бы о чём у вас идёт речь. Забудьте о дважды ковариантной $b$, вам нужны смешанные компоненты.


Что у меня не так с нотацией ? Это не обидка, просто хочу работать с правильными общепринятыми обозначениями, чтобы легче понимали меня и я легче других понимал :wink:

Как можно забыть про b, это же вторая кв. форма поверхности, которую нам и надо вычислить, чтобы потом искать кривизны (ещё отдельный вопрос, как найти первую форму, я прикинул, там не всё так легко, как показалось вначале) ?

Или вы предлагаете напрямую исследовать $II \cdot I^{-1}$ - это уже будет как раз тензор типа $(1, 1)$, след и определитель которого и являются искомыми кривизнами ?

 
 
 
 Re: Задача по дифференциальной геометрии 2-поверхностей
Сообщение08.06.2015, 10:38 
Аватара пользователя
Да. К тому же, он сразу в готовом виде появляется из выражения для производной нормали. Запишите его сюда и станет понятней, куда двигаться дальше.

 
 
 
 Re: Задача по дифференциальной геометрии 2-поверхностей
Сообщение08.06.2015, 18:00 
Аватара пользователя
Ну вот, поскольку ${\mathbf{r}}_{,\mu \nu }  = \Gamma _{\mu \nu }^\beta   \cdot {\mathbf{r}}_{,\beta }  + b_{\mu \nu }  \cdot {\mathbf{n}}$ и вдобавок $\left\langle {{\mathbf{n}},{\mathbf{n}}} \right\rangle  = 1$ и $\left\langle {{\mathbf{n}},{\mathbf{r}}_{,\mu } } \right\rangle  = 0$, то ${\mathbf{n}}_{,\mu }  =  - b_\mu ^\beta   \cdot {\mathbf{r}}_{,\beta }$. Теперь, учитывая что ${\mathbf{\tilde r}} = {\mathbf{r}} + a \cdot {\mathbf{n}}$, можно найти ${\mathbf{\tilde r}}_{,\mu }  = \left( {\delta _\mu ^\beta   - a \cdot b_\mu ^\beta  } \right) \cdot {\mathbf{r}}_{,\beta } $. Это ровно и значит, что ${\mathbf{\tilde n}} = {\mathbf{n}}$, что уже было сказано svv выше. Осталось продифференцировать последнее равенство и мы получим...

 
 
 
 Re: Задача по дифференциальной геометрии 2-поверхностей
Сообщение10.06.2015, 18:32 
Аватара пользователя
И как, есть сдвиги? Столь длительное зависание посреди пути несколько настораживает.

 
 
 
 Re: Задача по дифференциальной геометрии 2-поверхностей
Сообщение11.06.2015, 13:16 
Аватара пользователя

(Оффтоп)

Возможно, задача потеряла для него актуальность (в абсолютном или относительном смысле).

 
 
 [ Сообщений: 10 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group