2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Производная
Сообщение01.06.2015, 09:43 
Озадачил меня один студент: найти производную функции $x^x$ (ясно, что $x>0$). То ли я туплю, то ли что... Чуть не ляпнул - "по формуле сложной функции", но где же здесь сложная функция?
Направьте!

 
 
 
 Re: Производная
Сообщение01.06.2015, 09:45 
Вы что смеетесь, аэтож классика $x^x=e^{x\ln x}$

 
 
 
 Re: Производная
Сообщение01.06.2015, 09:49 
Спасибо, уже подсказали! Ну, ступил...

 
 
 
 Re: Производная
Сообщение01.06.2015, 10:19 
Аватара пользователя
Доп. вопросы:

1) $(x^{x^{\cdots^{x}}})'$
2) $(x^{x^{\cdots}})'$
3) Сходится ли поточечно первая функция ко второй при росте $n$? А равномерно?

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group