Следует ли из существования мажоранты для множества 

 : 

 что множество 

 предкомпактно в 

? 
я бы рассуждал так. Множество 

 ограничено значит слабо компактно в 

. Берем произвольную последовательность, извлекаем слабо сходящуюся подпоследовательность, из слабой сходимости, вроде бы должна следовать сходимость по мере, а значит, должна выделяться еще подпоследовательномть которая сходится почти всюду. А значит по теореме Лебега о мажорированной сходимости эта подпоследовательность сходится в 

. Вообщем, ответ на ваш вопрос, видимо, "да", но нужно мое рассуждение надо проверить по учебникам, там может где-то нужно еще чтоб 
