2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Тупой вопрос про уравнения Шрёдингера и Клейна-Гордона
Сообщение30.04.2015, 21:59 
Принято(Шифф, Бьёркен-Дрелл и многие другие авторы) искать решения соотв. ур-й в виде волн, т.е. для УШ $\psi=\psi_0e^{i(kx-wt)}$, для УКГ $\psi=\psi_0e^{\pm i(kx-wt)}$, а далее раскладываем решение по этим волнам.
Но видно же, что $\psi=\psi_0e^{i(-kx-wt)}$ также удовлетворяет УШ, а $\psi=\psi_0e^{\pm i(kx+wt)}$ - УКГ и соотв.дисперсионным соотношениям. Почему такие решения не берут? Или я просто подзабыл что-то о теоремах замкнутости и полноты?

 
 
 
 Re: Тупой вопрос про уравнения Шрёдингера и Клейна-Гордона
Сообщение30.04.2015, 22:11 
Аватара пользователя
Берут: просто это те же самые решения, но с другими значениями параметров.

 
 
 
 Re: Тупой вопрос про уравнения Шрёдингера и Клейна-Гордона
Сообщение30.04.2015, 23:12 
Аватара пользователя
Поменяйте знак у $k.$ Никто не сказал, что она неотрицательна.
(В жизни вообще-то $\mathbf{k}$ - это вектор.)

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group