Непонятно, как получить из одного собственного числа два собственных вектора.
Это неправильный вопрос, потому что имея один собственный вектор, мы имеем их бесконечно много, умножая на произвольные ненулевые числа.
Правильный вопрос: как для одного собственного вектора найти два или даже больше линейно независимых собственных векторов и когда это возможно?
Собственные векторы являются решениями некоторой однородной системы, следовательно, вместе с нулём образуют линейное подпространство ...