2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Т-изоморфизмы полей
Сообщение23.04.2015, 16:16 
Добрый день
Задача такая: при каких $a, b \in \mathbb{Z}$ поля $\mathbb{Q}(\sqrt{a}) \simeq \mathbb{Q}(\sqrt{b})$ $\mathbb{Q}$-изоморфны? Правильно ли будет - что только при $a=b$? Потому как чтобы существовал изоморфизм $\varphi$ такой, что $\sqrt{a} \rightarrow \sqrt{b}$ и $\varphi \mid_{\mathbb{Q}} = Id$, то $\sqrt{a}$ и $\sqrt{b}$ должны иметь один и тот же минимальный полином, чего однако, быть не может при разных a, b.

И ещё, как я понимаю требование $\mathbb{Q}$-изоморфности здесь лишнее, потому что для $\mathhbb{Q}$ имеет только один автоморфизм - идентичный, а значит любой изоморфизм расширений будет автоматически $\mathbb{Q}$-изоморфизмом

 
 
 
 Re: Т-изоморфизмы полей
Сообщение23.04.2015, 16:27 
greg2 в сообщении #1007153 писал(а):
Правильно ли будет - что только при $a=b$?
Нет. Рассмотрите пример, когда $a=2$, а $b=8$.
greg2 в сообщении #1007153 писал(а):
И ещё, как я понимаю требование $\mathbb{Q}$-изоморфности здесь лишнее, потому что для $\mathhbb{Q}$ имеет только один автоморфизм
Это да.

 
 
 
 Re: Т-изоморфизмы полей
Сообщение23.04.2015, 16:52 
Ага, то есть если поля одинаковые. Логично.

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group