2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Диф.уравнение 2 порядка.Численное решение.
Сообщение23.10.2007, 19:14 
Какие известные алгоритмы есть для численное решения дифференциальных уравнений второго порядка. Я слышала о методе прогонки. Не подскажите где ее найти и схему решения.
Спасибо.

 
 
 
 
Сообщение23.10.2007, 19:28 
Аватара пользователя
Кое-что есть вот здесь: Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. — Численные методы

 
 
 
 
Сообщение23.10.2007, 20:43 
Не.Ну хоть бы пример какой был :(

Добавлено спустя 5 минут 11 секунд:

P.S:и на какой странице так метод прогонки.Я смотрела на стр.409.Там нет (

 
 
 
 
Сообщение23.10.2007, 21:15 
Аватара пользователя
Ulya писал(а):
P.S:и на какой странице так метод прогонки.Я смотрела на стр.409.Там нет (
А чего Вы, скажем, на 78-й странице не поискали? :twisted: В предметном указателе ясно написано, что метод прогонки разбирается на 430 стр. :evil:
Посмотрите еще стр. 139 в книге Карташев А.П., Рождественский Б.Л. — Обыкновенные дифференциальные уравнения и основы вариационного исчисления

 
 
 
 
Сообщение23.10.2007, 23:13 
Ну хоть бы один был пример на метод прогонки для диф.уравнения 2 порядка (

Добавлено спустя 1 час 10 минут 47 секунд:

Мне только не понятно как найти $y_N,\ldots$...по каким формулам, т.е. обратную прогонку не поняла (

 
 
 
 
Сообщение24.10.2007, 18:42 
Аватара пользователя
Ulya писал(а):
обратную прогонку не поняла

Для численного решения краевой задачи линейных дифференциальных уравнений второго порядка с переменными коэффициентами используется подход с решением двух задачи Коши для двух начальных условий. Одно из заданного в на левом граничном условии с нулевым вторым( скажем значение функции задано, а производная не задана). Второе решение исходит из начальных условий равенства нулю значения функции и единичного значения производной. После их интегрирования, скажем по методу Рунге-Кутта, в правом граничном условии мы имеем два значения функции и два значения производной из задач Коши. Используя множитель для второго решения находим коэффициент суперпозиции решений.

Обратная прогонка означает суммировение первого решения в точках с домноженнм вторым решением с целью получения решения.

 
 
 
 Re: Диф.уравнение 2 порядка.Численное решение.
Сообщение25.10.2007, 11:04 
Аватара пользователя
Ulya писал(а):
Какие известные алгоритмы есть для численное решения дифференциальных уравнений второго порядка. Я слышала о методе прогонки. Не подскажите где ее найти и схему решения.
Спасибо.
Скажите точно, о какой задаче идет речь.
Метод прогонки - это способ прямого решения системы линейных алгебраических уравнений специального вида. Он не имеет непосредственного отношения к решению дифференциальных уравнений.

 
 
 
 
Сообщение25.10.2007, 16:45 
Аватара пользователя
TOTAL писал(а):
Метод прогонки - это способ прямого решения системы линейных алгебраических уравнений специального вида. Он не имеет непосредственного отношения к решению дифференциальных уравнений.
А название "Метод прогонки" - имеет! Посмотрите, например, мои ссылки на книги выше в теме и замечательное разъяснение Zai.

 
 
 
 Re: Диф.уравнение 2 порядка.Численное решение.
Сообщение18.03.2010, 21:37 
ааа вопрос к теме метод суперпозиции как звучит и где про него прочитать можно подскажите пожалуйста?!

 
 
 
 Re: Диф.уравнение 2 порядка.Численное решение.
Сообщение20.03.2010, 02:13 
можно ещё поискать Демидович, Марон вторую часть. там вполне доступно описано и примеры есть

 
 
 
 Re: Диф.уравнение 2 порядка.Численное решение.
Сообщение20.03.2010, 16:00 
 i  Не забываем смотреть на даты сообщений.
:wink:

 
 
 
 Re: Диф.уравнение 2 порядка.Численное решение.
Сообщение27.09.2011, 21:31 
А вот еще интересный вопрос (особенно для преподавателей со студентами не физико-математической специализации): какие есть наглядные способы интерпретации ЛДУ 2 порядка (с переменными коэф).
Начну отвечать сам: по-моему проще всего если нет члена с y', т.е
$y''+p(x)y=f(x)$
ну здесь проще всего балочная интерпретация - балка переменного сечения (главное переменный момент инерции под действием нагрузки M(x) и продольной сжимающей силы:
$EJ(x)y''+Py=M(x)$
тогда $p(x)=P/EJ(x)$ $f(x)=M(x)/(EJ(x))$
кроме того - к черту традиционное предположение о непрерывности (или даже дифференцируемости) функции p(x) - балка может быть ступенчатой, т.е. p(x) иметь разрывы 1 рода. На результатах классической теории ДУ и на численных методах это не отразится.
На такой модели легко интерпретируются т.н краевые условия 1 и 2 рода
Условие 1 рода - это консольная балка, условие 2 рода - балка с 2 шарнирными опорами. (В обычной ситуации еще поискать примеры краевых условий 2 рода, да и смешанных тоже). Граничные условия типа производных (Неймана) могут тоже механически интерпретироваться специальными цилиндрическими опорами, перемещающимися по вертикали, но сохраняющими направление направляющей цилиндра.
А вот что касаемо общего случая
$y''+q(x)y'+p(x)y=f(x)$
то в физической интерпретации я -пасс. Хотя интересно было бы взглянуть на класс физических или даже экономических задач интерпретируемых этим уравнением. Не зря математики разработали методы стрельбы и прогонки и для этого класса тоже. Хотелось бы видеть в каких задачах их можно применять!!!

 
 
 
 Re: Диф.уравнение 2 порядка.Численное решение.
Сообщение28.09.2011, 09:36 
eugrita в сообщении #486990 писал(а):
балка может быть ступенчатой, т.е. p(x) иметь разрывы 1 рода. На результатах классической теории ДУ и на численных методах это не отразится.

На классической теории не отразится (если излагать её достаточно вдумчиво), а вот на численных методах -- очень даже отразится: при неаккуратной реализации стандартных схем может снизиться точность.

eugrita в сообщении #486990 писал(а):
А вот что касаемо общего случая
$y''+q(x)y'+p(x)y=f(x)$
то в физической интерпретации я -пасс.

Для физики такой вид уравнений не очень естественен, поскольку дифференциальный оператор несимметричен. Вот если привести это уравнение к дивергентной форме: $(\alpha(x)\,y')'+\beta(x)\,y=\gamma(x),$ то поинтерпретировать можно: тут и уравнение Шрёдингера, и теплопроводность, и ещё чего.

 
 
 
 Re: Диф.уравнение 2 порядка.Численное решение.
Сообщение29.09.2011, 08:41 
Вы имеете ввиду фактически сведение дивергентной формы ОДУ к 3-диагональной системе метода конечных элементов (моментные уравнения Галеркина, кусочно-линейный базис)?

 
 
 
 Re: Диф.уравнение 2 порядка.Численное решение.
Сообщение29.09.2011, 09:32 
Для трёхдиагональности не имеет значения, дивергентная форма или нет: лобовая конечноразностная аппроксимация в любом случае даст трёхдиагональную систему. Дивергентность важна для другого -- для общих свойств уравнения: она позволяет перевести краевую задачу на вариационный язык, что делает численное решение более осмысленным. С другой стороны, дивергентный вид уравнения часто наиболее физичен.

 
 
 [ Сообщений: 23 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group