2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3
 
 Re: Как правильно представлять себе дифференциал?
Сообщение23.04.2015, 19:33 
Аватара пользователя
SergeyVK в сообщении #1006825 писал(а):
Вот в учебниках по классическому дифгему не понятно как понимать современному человеку вот такие дифференциалы в первой фундаментальной форме:
$ds^2 = Edu^2 + 2Fdudv + Gdv^2$
Теорема Менье утверждает нечто о кривизне кривой (получаемой пересечением поверхности и плоскости). Давайте временно введём произвольную параметризацию $t$ на этой кривой. Тогда перевод вышеприведенного на «нормальный язык» выглядит так:
$\left(\frac{ds}{dt}\right)^2 = E\left(\frac{du}{dt}\right)^2 + 2F\frac{du}{dt}\frac{dv}{dt} + G\left(\frac{dv}{dt}\right)^2$

$k_N=L\left(\frac{du}{ds}\right)^2 + 2M\frac{du}{ds}\frac{dv}{ds} + N\left(\frac{dv}{ds}\right)^2=$

$=\dfrac{L\left(\frac{du}{dt}\right)^2 + 2M\frac{du}{dt}\frac{dv}{dt} + N\left(\frac{dv}{dt}\right)^2}{\left(\frac{ds}{dt}\right)^2}=\dfrac{L\left(\frac{du}{dt}\right)^2 + 2M\frac{du}{dt}\frac{dv}{dt} + N\left(\frac{dv}{dt}\right)^2}{E\left(\frac{du}{dt}\right)^2 + 2F\frac{du}{dt}\frac{dv}{dt} + G\left(\frac{dv}{dt}\right)^2}$

Теперь всё OK. Но после лет пяти занятий подобной тематикой Вас осеняет: зачем каждый раз указывать, по какому параметру мы дифференцируем, если он произвольный и всюду в формуле один и тот же? Что, если для краткости не писать знаменатель в символическом обозначении производной?

 
 
 
 Re: Как правильно представлять себе дифференциал?
Сообщение23.04.2015, 20:27 
Аватара пользователя
svv в сообщении #1007261 писал(а):
Давайте временно введём произвольную параметризацию $t$ на этой кривой

На какой кривой?

 
 
 
 Re: Как правильно представлять себе дифференциал?
Сообщение23.04.2015, 20:34 
Аватара пользователя
мат-ламер в сообщении #1007290 писал(а):
На какой кривой?
svv в сообщении #1007261 писал(а):
кривой (получаемой пересечением поверхности и плоскости)
He?

 
 
 
 Re: Как правильно представлять себе дифференциал?
Сообщение23.04.2015, 20:40 
Аватара пользователя
Dan B-Yallay в сообщении #1007293 писал(а):
He?

А, понял. svv скопировал цитату не полностью. Там в ссылке далее про теорему Менье говорится.

 
 
 
 Re: Как правильно представлять себе дифференциал?
Сообщение23.04.2015, 22:14 

(Оффтоп)

Прочитал поначалу тему как "Как правильно представлять себя дифференциалом?"

 
 
 
 Re: Как правильно представлять себе дифференциал?
Сообщение23.04.2015, 23:06 
Аватара пользователя
Munin в сообщении #1007235 писал(а):
Это не трудности, а стандартные ограничения, фигурирующие в стандартном матанализе: если $dy=0,$ то ни $\dfrac{df(y)}{dx},$ ни $\dfrac{dx}{dy}$ не имеют смысла ("обращаются в бесконечность")

Это неправда: возьмите $\cos \cos x, (f = \cos y, y = \cos x)$, все дифференциалы равны в нуле нулю, но производная вполне себе не бесконечность.
Если отказываетесь верить примерам, можете взять того же Зорича (или любой другой учебник анализа) и почитать там доказательства формул, в том числе и причины по которым данное доказательство формально неверно.

-- 23.04.2015, 22:09 --

Да и в общем случае очень странно на $\frac{A}{0} \frac{0}{B}$ (что бы сии значки не значили) говорить что оно "обращается в бесконечность".

 
 
 
 Re: Как правильно представлять себе дифференциал?
Сообщение24.04.2015, 00:07 
Аватара пользователя
kp9r4d
Да, вы правы, я плохо сформулировал. Впрочем, моё предложение скорее "топорное" и "для физиков сойдёт", а не для таких нюансов...

 
 
 [ Сообщений: 37 ]  На страницу Пред.  1, 2, 3


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group