2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: определение тензора
Сообщение12.04.2015, 09:30 
Если в координатном виде, то линейный оператор $A:~V\rightarrow V$ представляется матрицей $A^i_j$. Элементы $V$ имеют один верхний индекс, элементы $V^*$ один нижний индекс, так что $A$ можно рассматривать как элемент $V\otimes V^*$. Или же как форму на $V^*\otimes V\simeq V\otimes V^*$, т.к. индексы $A$ можно сворачивать с индексами элементов $V^*\otimes V$ и получать числа.

В бескоординатном виде вам уже писали выше. По линейному оператору $A:~V\rightarrow V$ можно построить форму на $V^*\otimes V$ так: если $u=\sum_i x_i\otimes y_i$ -- какой-то элемент $V^*\otimes V$, где $x_i\in V^*$ и $y_i\in V$, то $A(u) = \sum_i x_i(Ay_i)$, где $Ay$ есть действие линейного оператора $A$ на $y\in V$, а $x(y)$ есть естественное спаривание элементов $V^*$ и $V$. И наоборот, по такой форме можно построить линейный оператор.

Это, в общем, абсолютно тривиально, и не заслуживает и этих пяти строчек.

 
 
 
 Re: определение тензора
Сообщение12.04.2015, 10:49 
Аватара пользователя
arseniiv в сообщении #1001863 писал(а):
Это вообще даже не функция

Это функция! Из множества $\{\mbox{все базисы пространства}\,\,V\}\times\{1,\cdots,\operatorname{dim} V\}\to \{\mbox{основное поле}\}$

 
 
 
 Re: определение тензора
Сообщение12.04.2015, 15:51 
Аватара пользователя
alcoholist
Это из принципа "вообще всё - функция"? :-) (например, любой объект есть константная функция)

 
 
 
 Re: определение тензора
Сообщение12.04.2015, 15:54 
Аватара пользователя
Такой подход должен понравиться arseniiv, с его интересом к функциональным языкам программирования.

 
 
 
 Re: определение тензора
Сообщение12.04.2015, 16:19 
Аватара пользователя
Munin в сообщении #1003002 писал(а):
Это из принципа "вообще всё - функция"? :-)

Вот посмотрите на определение касательного пространства в Рохлине-Фуксе))

 
 
 
 Re: определение тензора
Сообщение14.04.2015, 14:58 
type2b
Спасибо!

А не подскажите в Ваших определениях обязательно использовать тензорное произведение? Или как-то можно обходится прямым произведением (=прямой суммой)? Ведь полилинейные формы задают именно с помощью этой операции.

Вообщем мне не понятно - где достаточно прямого произведения, а где возникает необходимость в тензорном.

 
 
 
 Re: определение тензора
Сообщение14.04.2015, 16:27 
Аватара пользователя
А вас не смущает, что там ещё и стрелочка используется?

В общем, надо не поверхностно пытаться отсортировать, "где достаточно прямого произведения, а где возникает необходимость в тензорном", а надо пытаться понять смысл определений.

 
 
 
 Re: определение тензора
Сообщение15.04.2015, 19:25 
Munin
С определениями линейной алгебры я знаком (и со стрелочками вчастности). Но знаком на уровне без тензорного произведения пространств.

 
 
 
 Re: определение тензора
Сообщение15.04.2015, 19:50 
Аватара пользователя
Ну так вы с определением тензора-то знакомы? На уровне без тензорного произведения пространств.

Если да - то сами сопоставьте одно и другое определение. Если нет - то вы с определениями линейной алгебры не знакомы.

 
 
 
 Re: определение тензора
Сообщение15.04.2015, 21:11 
Аватара пользователя
illuminates в сообщении #1004195 писал(а):
С определениями линейной алгебры я знаком (и со стрелочками вчастности). Но знаком на уровне без тензорного произведения пространств.

Советую сначала осмыслить произведение тензоров. Тогда станет понятнее определение тензорного произведения пространств. Иначе не понять, откуда оно проистекает.

 
 
 
 Re: определение тензора
Сообщение15.04.2015, 22:04 
Аватара пользователя
Сначала сами тензоры, потом произведение тензоров, потом пространства...

 
 
 
 Re: определение тензора
Сообщение17.04.2015, 11:10 

(Оффтоп)

Munin в сообщении #1003002 писал(а):
(например, любой объект есть константная функция)
Этого я и боялся!

svv в сообщении #1003006 писал(а):
Такой подход должен понравиться arseniiv, с его интересом к функциональным языкам программирования.
Да что уж тут, я его уже давно знаю. :-)

 
 
 [ Сообщений: 27 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group