Проблема в том, что нелинейное преобразование меняет спецификацию ошибки. Даже если в исходной модели наблюдения отягощены ошибкой с равной дисперсией, после преобразования невязки полученной линеаризованной модели получают разную дисперсию (гетероскедастичность). Если изначально ошибки малы, эффект незначителен, но чем они больше, тем сильнее это сказывается. При больших надо либо использовать нелинейные методы оценивания, либо доказать, что именно после преобразования дисперсии выровнялись.
А сравнивать - коэффициент детерминации для сравнения моделей пригоден, если в них равное число параметров. Поскольку добавление даже несвязанных регрессоров коэффициент детерминации увеличивает (строго говоря, не уменьшает, но чтобы не изменился, нужно, чтобы добавляемый регрессор был бы ортогонален к вектору остатков модели, построенной без него). В этом случае лучше что-то, учитывающее число регрессоров и вводящее поправку - F-отношение, adjusted
.
и т.п.
Ну, или проверить на независимой выборке.