2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Доказать равенство из Шарыгина
Сообщение17.02.2015, 14:30 
Помогите разобраться, в самом курсе упоминается замена переменных, но я так и не понял, как и что заменить в этом задании.
Упражнение 18:
$(x+y+z)^3-x^3-y^3-z^3=3(x+y)(y+z)(z+x)$

 
 
 
 Re: Доказать равенство из Шарыгина
Сообщение17.02.2015, 14:49 
Аватара пользователя
Да не надо ничего заменять. Скобки раскрывать умеете?

-- менее минуты назад --

Есть другой вариант, с разложением левой части напрямую, но во-первых, там надо знать и разность кубов, и их сумму, а во-вторых, там тоже не надо ничего заменять.

-- менее минуты назад --

И да, там тоже придётся потом раскрывать кое-какие скобки.

 
 
 
 Re: Доказать равенство из Шарыгина
Сообщение17.02.2015, 15:23 
Аватара пользователя

(Оффтоп)

lred в сообщении #979543 писал(а):
Помогите разобраться, в самом курсе упоминается замена переменных, но я так и не понял, как и что заменить в этом задании.
Упражнение 18:
$(x+y+z)^3-x^3-y^3-z^3=3(x+y)(y+z)(z+x)$

Делаем замену: $x=a, \; y=b, \; z=c.$
Очевидно (доказывается в уме), что $(a+b+c)^3-a^3-b^3-c^3=3(a+b)(b+c)(c+a).$
Осталось вернуться к исходным переменным.

 
 
 
 Re: Доказать равенство из Шарыгина
Сообщение17.02.2015, 15:53 
А, ну таким способом я сделал, просто думал, может есть путь хитрее. Ну ладно, видать нет.

 
 
 
 Re: Доказать равенство из Шарыгина
Сообщение17.02.2015, 16:21 
Ну можно, например, заметить, что точки $-y,\ -z$ являются корнями левой части относительно переменной $x$. В силу симметрии тогда это выражение должно раскладываться как $A(x+y)(x+z)(y+z)$. А почему именно $A=3$? -- например, можно чуть-чуть прираскрыть скобки слева и посмотреть на коэффициент при $x^2$.

Непонятно, правда, чем это лучше тупого и всеобщего раскрытия скобок. Тем более что явно их можно не раскрывать: достаточно обратить внимание на то, что в левой части после раскрытия и сокращения останется $3^3-3=24$ слагаемых, а в правой -- тоже $24=3\cdot2^3$.

 
 
 
 Re: Доказать равенство из Шарыгина
Сообщение17.02.2015, 20:33 
Аватара пользователя
lred в сообщении #979543 писал(а):
Помогите разобраться, в самом курсе упоминается замена переменных, но я так и не понял, как и что заменить в этом задании.

Слева $x$ заменяется на $-y$. Как уже сказал ewert, тогда левая часть зануляется. Далее очевидно (см. пред. пост).

 
 
 
 Re: Доказать равенство из Шарыгина
Сообщение17.02.2015, 21:50 
мат-ламер в сообщении #979640 писал(а):
Слева $x$ заменяется на $-y$.

Только это не называется заменой переменной(ых). Увы. Вот у TOTAL была воистину замена так замена. Так что сия тайна так до сих пор и остаётся покрытой мраком.

 
 
 
 Re: Доказать равенство из Шарыгина
Сообщение17.02.2015, 22:32 
Эта задача на симметрические многочлены, попробуйте левую и правую части выразить через основные симм. многочлены - вот вам и замена переменных! Я такие тождества кучами доказывал, когда читал книгу Виленкина Симметрия в алгебре.

 
 
 
 Re: Доказать равенство из Шарыгина
Сообщение17.02.2015, 22:35 
Раньше микроскопы были хорошие, увесистые. Стукнешь таким раз -- и гвоздь сразу по самую шляпку. А сейчас фитюльки какие-то пошли...

 
 
 [ Сообщений: 9 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group