2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Замкнутость линейных рекуррентных последовательностей
Сообщение25.01.2015, 21:17 
Аватара пользователя
ewert Не особо задумывалась над задачей, но у меня возникло подозрение, что характеристический многочлен "нового" уравнения можно получить перемножая характеристические уравнения исходных соотношений. Правда, может получиться не минимальный. Это так?

 
 
 
 Re: Замкнутость линейных рекуррентных последовательностей
Сообщение25.01.2015, 21:18 
provincialka
Есть. Мне проще будет рекуррентное уравнение степени $k$ записывать в виде $x_{n+k}=f(x_{n+k-1},\ldots, x_{n})$. Введем оператор увеличения индекса, которые действует на последовательность так $Ix_n=x_{n+1}$, $I^2x_n=IIx_n=I x_{n+1}=x_{n+2}$ и т.д. Тогда линейное рекурретное уравнение можно записать в виде $P(I)x_n=0$, где $P(I)=I^k+a_{k-1}I^{k-1}+\ldots+a_1 I+a_0$ -- многочлен с постоянными коэффициентами. Если теперь $x_n$ удовлетворяет уравнению $Px_n=0$, $y_n$ удовлетворяет уравнению $Qy_n=0$, то $z_n=x_n+y_n$ будет удовлетворять уравнению $PQz_n=0$. Для доказательство надо подставить $z_n=x_n+y_n$ и еще учесть, что $PQ=QP$, т.к. это многочлены от одного и того же оператора $I$.

Ну вот, уже все решили )

-- Пн янв 26, 2015 00:23:53 --

provincialka в сообщении #968262 писал(а):
Правда, может получиться не минимальный.


Да, вместо $PQ$ подойдет наименьшее общее кратное $P$ и $Q$.

 
 
 
 Re: Замкнутость линейных рекуррентных последовательностей
Сообщение25.01.2015, 21:23 
provincialka в сообщении #968262 писал(а):
Правда, может получиться не минимальный. Это так?

Вот чего не думал, о том не задумывался. Хотя минимальным он быть, естественно, не обязан, т.к. корни могут и совпадать. Ну взять хотя бы два одинаковых рекуррентных соотношения.

 
 
 
 Re: Замкнутость линейных рекуррентных последовательностей
Сообщение25.01.2015, 21:24 
Аватара пользователя
Padawan
Спасибо от меня (ТС-у, надеюсь, это тоже было полезно). Ключевое, конечно, равенство $PQ=QP$, над ним мне надо еще подумать.

 
 
 
 Re: Замкнутость линейных рекуррентных последовательностей
Сообщение25.01.2015, 21:30 
Padawan в сообщении #968264 писал(а):
Введем оператор увеличения индекса, которые действует на последовательность так $Ix_n=x_{n+1}$, $I^2x_n=IIx_n=I x_{n+1}=x_{n+2}$ и т.д.

Это, по-моему, лишнее. Вполне достаточно того, что любой разностный оператор есть произведение соотв. однократных, и эти сомножители коммутируют.

-- Вс янв 25, 2015 22:33:57 --

(Оффтоп)

Kozyrr в сообщении #968245 писал(а):
Остальные св-ва для линейного подпространства я доказал,

все-все-все?... т.е. буквально все-все аксиомы?...

По-моему, это (если от вас именно это требовали) -- явное издевательство.

 
 
 
 Re: Замкнутость линейных рекуррентных последовательностей
Сообщение25.01.2015, 21:35 
ewert
Что лишнее? Оператор увеличения индекса лишний? Это базовая вещь. Более базовая даже, чем разностный оператор $\Delta=I-1$ Я неудачно обозначил его, кстати.

 
 
 
 Re: Замкнутость линейных рекуррентных последовательностей
Сообщение26.01.2015, 00:44 
Мне встречалось обозначение $\mathsf E$.

Padawan в сообщении #968264 писал(а):
Если теперь $x_n$ удовлетворяет уравнению $Px_n=0$, $y_n$ удовлетворяет уравнению $Qy_n=0$, то $z_n=x_n+y_n$ будет удовлетворять уравнению $PQz_n=0$.
Класс! Как просто и ясно!

 
 
 [ Сообщений: 22 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group