2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Прошу проверить решение логарифмического неравенства
Сообщение21.01.2015, 17:38 
Аватара пользователя
Неравенство

$\log_{x^2+x}(x^2-2x+1)\leqslant1$

Решение

$\log_{x^2+x}(x^2-2x+1)\leqslant\log_{x^2+x}(x^2+x)$

$(x^2-2x+1)\leqslant(x^2+x)$

Раскрываем скобки, упрощаем

$3x\geqslant1$

$x\geqslant\frac{1}{3}$

И еще
$(x^2-2x+1)\geqslant0$ - это в самом начале написать

 
 
 
 Re: Прошу проверить решение логарифмического неравенства
Сообщение21.01.2015, 17:39 
Аватара пользователя
Много ошибок.
1. не правильно сформулировано ОДЗ
2. логарифм не всегда возрастающая функция

 
 
 
 Re: Прошу проверить решение логарифмического неравенства
Сообщение21.01.2015, 17:44 
Аватара пользователя
Francisk в сообщении #966242 писал(а):
И еще
$(x^2-2x+1)\geqslant0$ - это в самом начале написать
Это квадрат. Он (почти) всегда неотрицателен.

 
 
 
 Re: Прошу проверить решение логарифмического неравенства
Сообщение21.01.2015, 17:45 
Аватара пользователя
provincialka
ОДЗ

$(x^2-2x+1)>0$

Насчет второго пункта не понял.

-- 21.01.2015, 17:46 --

Dan B-Yallay
т.е. ОДЗ не нужно?

 
 
 
 Re: Прошу проверить решение логарифмического неравенства
Сообщение21.01.2015, 17:48 
Аватара пользователя
Francisk в сообщении #966251 писал(а):
Dan B-Yallay
т.е. ОДЗ не нужно?
У Вас база логарифма тоже зависит от икса. На ОДЗ это как то должно влиять?

 
 
 
 Re: Прошу проверить решение логарифмического неравенства
Сообщение21.01.2015, 17:49 
Аватара пользователя
Francisk, вы совершенно не учитываете, что основание логарифма у вас переменное. Это важно обоих пунктах моих претензий.

 
 
 
 Re: Прошу проверить решение логарифмического неравенства
Сообщение21.01.2015, 17:51 
Аватара пользователя
Dan B-Yallay
т.е. для основания $x^2+x$ тоже нужно ОДЗ?

 
 
 
 Re: Прошу проверить решение логарифмического неравенства
Сообщение21.01.2015, 17:53 
Аватара пользователя

(Оффтоп)

Блин. Основание базой обозвал.
"Русский речь меня покидать"....


-- Ср янв 21, 2015 08:55:08 --

Francisk в сообщении #966259 писал(а):
Dan B-Yallay
т.е. для основания $x^2+x$ тоже нужно ОДЗ?
Естессно. Оно только для него и нужно. Об этом и provincialka Вам говорит.

 
 
 
 Re: Прошу проверить решение логарифмического неравенства
Сообщение21.01.2015, 17:59 
Аватара пользователя
Dan B-Yallay
provincialka

Первая система

$x^2+x>1$
$x^2-2x+1\leqslant(x^2+x)$
$x^2-2x+1>0$

Вторая система

$x^2+x>0$
$x^2+x<1$
$x^2-2x+1\geqslant(x^2+x)$
$x^2-2x+1>0$

Вот. Только я не могу понять какое значение играет больше или меньше единицы $x^2+x$

 
 
 
 Re: Прошу проверить решение логарифмического неравенства
Сообщение21.01.2015, 18:03 
Аватара пользователя
Логарифм по "маленькому" основанию - убывающая функция. Понятно, что это значит в данной задаче?

 
 
 
 Re: Прошу проверить решение логарифмического неравенства
Сообщение21.01.2015, 18:05 
Аватара пользователя
Проще всего запомнить, что на своем ОДЗ неравенство $\log_{f(x)}g(x)-\log_{f(x)}h(x) >(<)0 $ равносильно неравенству $(f(x)-1)(g(x)-h(x))>(<)0.$

 
 
 
 Re: Прошу проверить решение логарифмического неравенства
Сообщение21.01.2015, 18:07 
Аватара пользователя
provincialka в сообщении #966271 писал(а):
Логарифм по "маленькому" основанию

Не понял смысла данной фразы

 
 
 
 Re: Прошу проверить решение логарифмического неравенства
Сообщение21.01.2015, 18:09 
Аватара пользователя
Francisk в сообщении #966276 писал(а):
Не понял смысла данной фразы
Посмотрите график $\log _{0.5} x$

 
 
 
 Re: Прошу проверить решение логарифмического неравенства
Сообщение21.01.2015, 18:11 
Аватара пользователя
Вы ведь разделили задачу на два случая: $x^2+x>1$ и $x^2+x<1$. Вот второй тип основания я и назвала "маленьким". А вообще вам надо повторить свойства логарифма. Вы должны их знать без наших подсказок.

-- 21.01.2015, 18:11 --

Brukvalub
Мне кажется, ТС-у это рановато. :-(

 
 
 
 Re: Прошу проверить решение логарифмического неравенства
Сообщение21.01.2015, 18:12 
Аватара пользователя
provincialka

Вопрос, можно ли объяснить так:

когда $x^2+x>1$, то логарифм. функция возрастает, следовательно в выражении

$x^2-2x+1\leqslant(x^2+x)$

знак неравенства не меняем, оставляем как есть

а когда $x^2+x<1$ но
$x^2+x>0$, то знак неравенства меняем, ибо функция убывает

 
 
 [ Сообщений: 19 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group