2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Лапласиан в криволинейных координатах
Сообщение20.01.2015, 11:57 
Аватара пользователя
Здравствуйте, уважаемые форумчане!

Имеется $m-1$-мерная гиперповерхность $\Gamma$ в $m$-мерном Евклидовом пространстве $\mathbb{R}^m$. Параметризация $r(s)\in\Gamma,$ $s=(s^1,...s^{m-1}).$

В окрестности поверхности вводится ортогональная система координат $x=r(s)-u n(s),$ где $r(s)$- радиус-вектор поверхности, $n(s)$- нормаль к поверхности, $u$-число, $x\in\mathbb{R}^m$-элемент Евклидова пространства.

Требуется записать Лапласиан в этих новых координатах. Последовательно вычисляем:
\begin{equation}\nonumber f_{x_i}=\displaystyle\frac{\partial f}{\partial s^{\nu}} \frac{\partial s^{\nu}}{\partial x_i},\end{equation}

\begin{equation}\label{Laplace}f_{x_ix_i}=\displaystyle\frac{\partial f}{\partial s^{\nu}} \frac{\partial^2s^{\nu}}{\partial x_i^2}+\frac{\partial^2 f}{\partial s^{\nu} \partial s^{\mu}} \frac{\partial s^{\mu}}{\partial x_i} \frac{\partial s^{\nu}}{\partial x_i}.\end{equation}

Здесь суммирование ведется по $\mu, \nu$ от $1$ до $m$, причем обозначим $u\equiv s^{m}.$

Нас интересуют коэффициенты при $\displaystyle\frac{\partial f}{\partial u}$, $\displaystyle\frac{\partial^2 f}{\partial u^2}$, $\displaystyle\frac{\partial^2 f}{\partial u \partial s^j}, j=1,...m-1.$

Для того, чтобы вычислть коэффициенты при частных производных второго порядка, заметим, что элементы $G^{\nu,\mu}=\displaystyle\frac{\partial s^{\mu}}{\partial x_i} \frac{\partial s^{\nu}}{\partial x_i}$ образуют матрицу $G^{-1}$, обратную к матрице $G$ с элементами $G_{\nu,\mu}=\displaystyle\frac{\partial x_k}{\partial s^{\mu}} \frac{\partial x_k}{\partial s^{\nu}}.$

Матрица же матрица $G$ имеет структуру $G=\begin{pmatrix}G_{m-1}&0\\0&1\end{pmatrix},$ где $G_{m-1}-$ квадратная матрица размерности $(m-1)\times (m-1).$
Поэтому в формуле $(1)$ коэффициенты при частных производных второго порядка с участием частной производной по $u$ упрощаются: коэффициенты при $\displaystyle\frac{\partial^2 f}{\partial u \partial s^j}, j=1,...m-1,$ равны $0$, а при $\displaystyle\frac{\partial^2 f}{\partial u^2}, -$ равен 1.

Вопрос: как упростить выражение при частной производной $\displaystyle\frac{\partial f}{\partial u}$ первого порядка по $u$, то есть как упростить $\displaystyle\frac{\partial^2 u}{\partial x_i^2},$ где суммирование ведется по $i$ от $1$ до $m$?

Зараннее большое спасибо.

 
 
 
 Re: Лапласиан в криволинейных координатах
Сообщение22.01.2015, 19:51 
Аватара пользователя
Пусть латинские индексы бегают от $1$ до $d$, греческие - от $0$ до $d$, индекс $\mu$ после запятой означает дифференцирование по соответствующему $x^{\mu}$ и принято правило суммирования по повторяющимся индексам.

Итак, в $\mathbb{R}^d $ задана поверхность $\mathbf{r}  = {\mathbf{r}}\left( {x^i } \right)$, для которой можно выписать следующие деривационные формулы
$$\[
\left\{ {\begin{array}{rcl}
   {{\mathbf{r}}_{,ik}  &= &\Gamma _{ik}^s {\mathbf{r}}_{,s}  + b_{ik} {\mathbf{n}}}  \\
   {{\mathbf{n}}_{,i}  &=  &- b_i^s {\mathbf{r}}_{,s} }  \\

 \end{array} } \right.
\]
$$Причём, ${\mathbf{n}} \cdot {\mathbf{n}} = 1$, ${\mathbf{n}} \cdot {\mathbf{r}}_{,i}  = 0$ и, разумеется, ${\mathbf{r}}_{,i}  \cdot {\mathbf{r}}_{,k}  \equiv g_{ik} $, $2\Gamma _{ik}^s  = g^{sl} \left( {g_{li,k}  - g_{ik,l}  + g_{kl,i} } \right)$ и т.д.

Далее в условии предлагается добавить ещё одну координату $x^0$, отложив её против нормали $\mathbf{n}$ так, чтобы получилась поверхность с размерностью на единицу выше исходной
$${\mathbf{y}}\left( {x^0 ,x^i } \right) = {\mathbf{r}}\left( {x^i } \right) - x^0 {\mathbf{n}}\left( {x^i } \right)$$По техническим причинам последняя поверхность (для достаточно малых $x^0$) совпадает с частью $\mathbb{R}^d $, если только невырождена следующая матрица
$$\tilde g_{\mu \nu }  \equiv {\mathbf{y}}_{,\mu }  \cdot {\mathbf{y}}_{,\nu } $$А поскольку $\tilde g_{00}  = 1, \quad \tilde g_{0i}  = 0$, то предыдущее требование сводится к невырожденности
$$\tilde g_{ik}  = g_{ik}  + 2x^0 b_{ik}  + \left( {x^0 } \right)^2 b_i^s b_{sk} $$Контравариантными же компонентами тильда-метрики будут $\tilde g^{00}  = 1,\quad \tilde g^{0i}  = 0$ и $\tilde g^{ik} $, чья матрица обратна к $\tilde g_{ik} $.

Самое время вспомнить о лапласиане. В произвольных координатах он имеет такой вид
$$\Delta  \equiv \tilde g^{\mu \nu } \left( {\partial _{\mu \nu }^2  - \tilde \Gamma _{\mu \nu }^\sigma  \partial _\sigma  } \right)$$где тильда-связность строится по тильда-метрике обычным образом. После несложных махинаций над всем вышеприведенным, приходим к решающей поставленную задачу формуле
$$\Delta  = \partial _{00}^2  + \tilde g^{ik} \left[ {\partial _{ik}^2  + \left( {b_{ik}  + x^0 b_i^s b_{sk} } \right)\partial _0  - \tilde g^{sl} \tilde \Gamma _{lik} \partial _s \right]$$где
$$\tilde \Gamma _{lik}  = \Gamma _{lik}  + x^0 \left( {b_{li;k}  + 2\Gamma _{ik}^m b_{ml} } \right) + \left( {x^0 } \right)^2 \left( {b_{i;k}^m  + \Gamma _{ik}^s b_s^m } \right)b_{ml} $$

P.S. Я проверил её на окружности в $\mathbb{R}^2 $ и получил обычное выражение для лапласиана в полярных координатах.

 
 
 
 Re: Лапласиан в криволинейных координатах
Сообщение22.01.2015, 20:30 
Аватара пользователя
Всегда проще расписывать Лапласиан через форму Дирихле:
$$
\iiint \nabla u \cdot \nabla v dV= -\iiint u \Delta v dV.
$$
Тогда если метрический тензор $g_{jk}$ (который в наших условиях будет $\frac{\partial \mathbf{r}}{\partial y^j}\cdot \frac{\partial \mathbf{r}}{\partial y^k}$, где $y$ криволинейные координаты, то $\nabla u \cdot \nabla v= g^{jk} \frac{\partial u}{\partial y^j}\frac{\partial v}{\partial y^k}$, где $(g^{jk})$ обратный к $(g_{jk})$, и $dV= \sqrt{g} dy^1\cdots dy^n$, где $g=\det (g_{jk})$, и тогда немедленно
$$
\Delta v= \frac{1}{\sqrt{g}} \frac{\partial \ }{\partial y^j}\bigl(\sqrt{g}g^{jk}\frac{\partial v }{\partial y^k}\bigr)
$$

Используется эйнштейновское суммирование

 
 
 
 Re: Лапласиан в криволинейных координатах
Сообщение22.01.2015, 20:49 
Аватара пользователя
Раскрывать сие будет гораздо менее удобно, если только не выписывать обратный тензор явно.

-- Чт янв 22, 2015 22:40:06 --

Гм, а почему это оно по $x^0$ линейно? Похоже, я какую-то скобку потерял. Завтра перепроверю. На свежую голову.

 
 
 
 Re: Лапласиан в криволинейных координатах
Сообщение22.01.2015, 22:30 
Аватара пользователя
Утундрий в сообщении #966936 писал(а):
Гм, а почему это оно по $x^0$ линейно?

Не забывайте, что $\tilde{g}_{jk}$ и $\tilde{g}^{jk}$ зависят от $х^0$ (в Ваших обозначениях)

 
 
 
 Re: Лапласиан в криволинейных координатах
Сообщение23.01.2015, 00:17 
Аватара пользователя
Да нет, там квадратично должно быть. Уже нашёл ошибку, таки потерял скобку. А в примере с кругом это не сыграло потому что удержанный множитель обнуляется.

Переписал член с $\partial _s $ и заодно убрал опечатку в определении $\Delta $. Теперь должно быть правильно.

 
 
 
 Re: Лапласиан в криволинейных координатах
Сообщение23.01.2015, 17:57 
Аватара пользователя
Кстати, любопытно, что на самой поверхности
$$\left. {\Delta f} \right|_\Gamma   = f_{,00}  + b_s^s f_{,0}  + \Delta _\Gamma  f$$и минимальная поверхность ($b_s^s  = 0$) выделяется на фоне других.

 
 
 
 Re: Лапласиан в криволинейных координатах
Сообщение27.01.2015, 04:41 
Аватара пользователя
Уважаемый Утундрий, Спасибо большое за Ваш ответ!
Могли бы Вы пояснить некоторые моменты?
Утундрий в сообщении #966899 писал(а):
Самое время вспомнить о лапласиане. В произвольных координатах он имеет такой вид
$$\Delta  \equiv \tilde g^{\mu \nu } \left( {\partial _{\mu \nu }^2  - \tilde \Gamma _{\mu \nu }^\sigma  \partial _\sigma  } \right)$$где тильда-связность строится по тильда-метрике обычным образом.

А как получается эта формула? Непосредственные вычисления ведут меня к следующему:
$y=r(x),$ $$\displaystyle\frac{\partial^2 f}{\partial y_{\mu} \partial y_{\mu}}=\frac{\partial}{\partial y_{\mu}}\left(\frac{\partial x^{\nu} }{\partial y_{\mu} } \frac{\partial f }{\partial x^{\nu} }\right)
=
\frac{\partial^2 x^{\nu} }{\partial y^2_{\mu} }\frac{\partial f }{\partial x^{\nu} }+
\frac{\partial x^{\nu} }{\partial y_{\mu} } \frac{\partial x^{\sigma} }{\partial y_{\mu} } \frac{\partial^2 f}{\partial x^{\nu}\partial x^{\sigma}}
=
\frac{\partial^2 x^{\sigma}}{\partial y^2_{\mu}} \frac{\partial f}{\partial x^{\sigma}}+\widetilde{g}^{\mu\nu} \frac{\partial^2 f}{\partial x^{\mu}\partial x^{\nu}}.$$
Второе слагаемое в этой формуле совпадает с первым слагаем в Вашей формуле (после раскрытия скобок). Сравнивая оставшиеся слагаемые, получаем, что должно быть $$\widetilde{g}^{\mu\nu}\widetilde{\Gamma}_{\mu\nu}^{\sigma}=-\frac{\partial^2 x^{\sigma}}{\partial y^2_{\mu}}.$$
А почему это так?

 
 
 
 Re: Лапласиан в криволинейных координатах
Сообщение27.01.2015, 08:50 
Аватара пользователя
Asalex в сообщении #969020 писал(а):
как получается эта формула?
Простым расширением по ковариантности. Другими словами, это единственное инвариантное относительно произвольных замен переменных выражение, переходящее в искомый оператор при использовании декартовых координат. Ввёл я его декларативно, но вон же, выше, Red_Herring написал ещё один вариант, почему это так. Если раскрыть производные в приведенной им формуле и заменить кое-чего с использованием известных тождеств, то получится ровно то, что я написал.

 
 
 
 Re: Лапласиан в криволинейных координатах
Сообщение27.01.2015, 12:58 
Аватара пользователя
Уважаемые Red_Herring, Утундрий, спасибо еще раз за Ваши ответы!
Но еще остаются непонятные моменты.
Утундрий в сообщении #969047 писал(а):
Простым расширением по ковариантности. Другими словами, это единственное инвариантное относительно произвольных замен переменных выражение, переходящее в искомый оператор при использовании декартовых координат.

Гм, я этого не понял. Как можно получить одно выражение из другого, более простыми словами?
Утундрий в сообщении #969047 писал(а):
Ввёл я его декларативно, но вон же, выше, Red_Herring написал ещё один вариант, почему это так. Если раскрыть производные в приведенной им формуле и заменить кое-чего с использованием известных тождеств, то получится ровно то, что я написал.

По методу Red_Herring, получаем
$$\Delta v = g^{jk}\frac{\partial^2 v}{\partial y^j\partial j^k}+\frac{1}{\sqrt{g}}\frac{\partial}{\partial y^j}\left(\sqrt{g}g^{jk}\right)\frac{\partial v}{\partial y^k},$$
и сравнивая коэффициенты при производной первой степени, получим
$$\frac{\partial g^{jk}}{\partial y^j}+\frac{g^{jk}}{2g}\frac{\partial g}{\partial y^j}=\sum\limits_{i}\frac{\partial^2 y^k}{\partial x_i^2}=-g^{ij}\Gamma_{ij}^k.$$
Правильно ли я понимаю, что для того чтобы получить равенство первого и третьего выражений, нужно свернуть с $g_{ij}$ два раза, чтобы убрать ковариантный тензор $g^{ij}$ перед символами Кристофеллля, постараться прийти к одинакоым выражениям, и вернуться обратными преобразованиями?
Но я совершенно не понимаю как получить второе выражение из первого либо третьего.

 
 
 
 Re: Лапласиан в криволинейных координатах
Сообщение27.01.2015, 13:42 
Аватара пользователя
Asalex
Используйте что $\partial_s g^{jk} = - g^{jl}(\partial_s g_{lm}) g^{mk}$ и $\partial_s g = g^{jl}(\partial_s g_{lj}) $. Ну и определения символов Кристоффеля

 
 
 
 Re: Лапласиан в криволинейных координатах
Сообщение22.02.2015, 13:06 
Аватара пользователя
Здравствуйте, уважаемые форумчане!

Пусть в $n$-мерном пространстве задана система координат $(x^i)$ с соответствующим метрическим тензором $(g_{ij}),$ и мы рассматриваем поверхность, заданную в координатах $(s_{\nu})$ ($\nu=1,...,n-1$), соответствующий метрический тензор $\tilde g_{\mu,\nu}=g_{ij}\displaystyle\frac{\partial x^i}{\partial s^{\mu}} \frac{\partial x^j}{\partial s^{\nu}}.$ Принято правило суммирования по повторяюшимся верхним и нижним индексам, и договоримся что латинские индексы ($i,j,k,l,m$) бегают от 1 до $n$, а греческие ($\mu,\nu,\rho$) -- от 1 до $n-1.$
Правильно ли я понимаю, что в формулах
$$\[
\left\{ {\begin{array}{rcl}
   \displaystyle\frac{\partial \mathbf{r} }{\partial s^{\nu}\partial s^{\mu}}&=&\tilde\Gamma_{\nu,\mu}^{\rho} \displaystyle\frac{\partial \mathbf{r}}{\partial s^{\rho}} + \tilde b_{\mu,\nu} \mathbf{n}, \qquad\qquad(1)\\\\
\displaystyle\frac{\partial \mathbf{n}}{\partial s^{\nu}}&=&-\tilde c_{\nu}^{\mu}\displaystyle\frac{\partial \mathbf{r}}{\partial s^{\mu}},\qquad\qquad\qquad\quad(2)
 \end{array} } \right.
\]
$$
тензоры $\tilde b_{\mu,\nu}$ и $\tilde c_{\nu}^{\mu}$ соответствуют друг другу поднятием по метрическому тензору $\tilde g$, только в случае что изначальный метрический тензор $(g_{ij})$ постояннен?
Ведь из первого равенства мы имеем, домножая справа скалярно на $\mathbf{n}:$ $$\tilde b_{\mu,\nu}=g_{ij}\displaystyle\frac{\partial^2 x^j }{\partial s^{\mu}\partial s^{\nu}} n^i,\qquad\qquad(3)$$
а из второго равенства, домножая его скалярно на $\frac{\partial \mathbf{r}}{\partial s^{\nu}},$ получаем
$$\tilde c_{\mu,\nu}=\tilde c_{\mu}^{\rho}\tilde g_{\rho,\nu}=-g_{ij}\frac{\partial n^i}{\partial s^{\mu}} \frac{\partial x^j}{\partial s^{\nu}}.\qquad\qquad(4)$$
Равенство (3) и (4) можно получить, дифференцируя по $ s^{\mu}$ тождество
$$0=(\mathbf{n},\frac{\partial \mathbf{r}}{\partial s^{\nu}})=g_{ij}n^i\frac{\partial x^j}{\partial s^{\nu}},$$
где круглые скобки означают скалярное произвеждение.
Но это только в предположении что $g_{ij}$ постоянно.

Зараннее большое спасибо.

 
 
 
 Re: Лапласиан в криволинейных координатах
Сообщение22.02.2015, 16:47 
Аватара пользователя
Asalex в сообщении #981159 писал(а):
тензоры $\tilde b_{\mu,\nu}$ и $\tilde c_{\nu}^{\mu}$ соответствуют друг другу поднятием по метрическому тензору $\tilde g$, только в случае что изначальный метрический тензор $(g_{ij})$ постояннен?

Нет, это в любой ситауции так.

И не впрягайте телегу в лошадь. Уравнение (2) получается из дифференцирования скалярного произведения, а не наоборот.

 
 
 
 Re: Лапласиан в криволинейных координатах
Сообщение22.02.2015, 22:17 
Аватара пользователя
Asalex
Я получу ещё деривационные формулы своим способом, добавлю взаимосвязей.
Латинские индексы меняются от $0$ до $N-1$, греческие от $1$ до $N-1$. Тем самым выделяется координата $x^0$.
Координаты обозначаю $x$, смысл $x^\mu$ тот же, что у Ваших $s^\mu$, а $x^0$, наверное, аналогична Вашей $u$.
Индекс после запятой — производная по соответствующей координате.

Начинаю с формул $\mathbf r_{,m}=\mathbf e_m$ и $\mathbf e_{m,n}=\Gamma^r_{mn}\mathbf e_r$. Их обоснование — отдельный разговор. Векторы $\mathbf e_m$ — это просто векторы координатного базиса в соответствующей точке.

Фиксируя $x^0$, получаем поверхность, скажем, $x^0=0$. Требуем, чтобы на этой поверхности было $g_{00}=1$ и $g_{\mu 0}=0$. Это значит, что $\mathbf e_0=\mathbf n$ — единичная нормаль к поверхности.

Имеем
$\mathbf r_{,m\nu}=\mathbf e_{m,\nu}=\Gamma^r_{m\nu}\mathbf e_r=\Gamma^\rho_{m\nu}\mathbf r_{,\rho}+\Gamma^0_{m\nu}\mathbf n$
Полагая отдельно $m=\mu$ и $m=0$, получим
$\mathbf r_{,\mu\nu}=\Gamma^\rho_{\mu\nu}\mathbf r_{,\rho}+\Gamma^0_{\mu\nu}\mathbf n$
$\mathbf n_{,\nu}=\Gamma^\rho_{0\nu}\mathbf r_{,\rho}+\Gamma^0_{0\nu}\mathbf n$

Это и есть деривационные формулы. Но не все связи установлены. Учтем, что $g_{m0}$ константа при любом $m$:
$0=g_{m0,\nu}=(\mathbf e_m, \mathbf e_0)_{,\nu}=(\mathbf e_{m,\nu}, \mathbf e_0)+(\mathbf e_m, \mathbf e_{0,\nu})=$
$=g_{r0}\Gamma^r_{m\nu}+g_{rm}\Gamma^r_{0\nu}=\Gamma^0_{m\nu}+g_{\rho m}\Gamma^\rho_{0\nu}$

Полагая $m=\mu$, получим $\Gamma^0_{\mu\nu}+g_{\rho \mu}\Gamma^\rho_{0\nu}=0$. Это ответ на Ваш вопрос о взаимосвязи тензоров $b$ и $c$.
Полагая $m=0$, получим $\Gamma^0_{0\nu}=0$, и второе слагаемое из формулы для $\mathbf n_{,\nu}$ вычеркивается.

Но сказать, что система $\bar x$ (Ваша $x$) здесь совсем никак не маячит, нельзя. Именно она задаёт смысл понятию параллельного переноса вектора из одной точки в другую, необходимому для дифференцирования векторов $\mathbf e_m$ по координате.

 
 
 
 Re: Лапласиан в криволинейных координатах
Сообщение28.02.2015, 12:17 
Аватара пользователя
Спасибо!

 
 
 [ Сообщений: 15 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group